Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Science and Ecotechnology Pub Date : 2025-01-01 DOI:10.1016/j.ese.2024.100521
Juan C. Sanchez-Hernandez , Mallavarapu Megharaj
{"title":"Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes","authors":"Juan C. Sanchez-Hernandez ,&nbsp;Mallavarapu Megharaj","doi":"10.1016/j.ese.2024.100521","DOIUrl":null,"url":null,"abstract":"<div><div>Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies—landfilling, incineration, and recycling—remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management. However, insect-assisted plastic depolymerization is incomplete, leaving significant amounts of microplastics in the frass (or manure), limiting its use as a soil amendment. In this perspective, we propose a novel two-step bioconversion system to overcome these limitations, using insects to sustainably manage plastic waste while revalorizing its by-products (frass). The first step involves pyrolyzing microplastic-containing frass from mealworms (<em>Tenebrio molitor</em> larvae) fed on plastic-rich diets to produce biochar with enhanced adsorptive properties. The second stage integrates this biochar into the entomocomposting of organic residues, such as food waste, using black soldier fly (<em>Hermetia illucens</em>) larvae to produce nutrient-rich substrates enriched with carbon and nitrogen. This integrated system offers a potential framework for large-scale industrial applications, contributing to the bioeconomy by addressing both plastic waste and organic residue management. We critically examine the advantages and limitations of the proposed system based on current literature on biochar technology and entomocomposting. Key challenges and research opportunities are identified, particularly concerning the physiological and toxicological processes involved, to guide future efforts aimed at ensuring the scalability and sustainability of this innovative approach.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"23 ","pages":"Article 100521"},"PeriodicalIF":14.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758129/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424001352","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies—landfilling, incineration, and recycling—remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management. However, insect-assisted plastic depolymerization is incomplete, leaving significant amounts of microplastics in the frass (or manure), limiting its use as a soil amendment. In this perspective, we propose a novel two-step bioconversion system to overcome these limitations, using insects to sustainably manage plastic waste while revalorizing its by-products (frass). The first step involves pyrolyzing microplastic-containing frass from mealworms (Tenebrio molitor larvae) fed on plastic-rich diets to produce biochar with enhanced adsorptive properties. The second stage integrates this biochar into the entomocomposting of organic residues, such as food waste, using black soldier fly (Hermetia illucens) larvae to produce nutrient-rich substrates enriched with carbon and nitrogen. This integrated system offers a potential framework for large-scale industrial applications, contributing to the bioeconomy by addressing both plastic waste and organic residue management. We critically examine the advantages and limitations of the proposed system based on current literature on biochar technology and entomocomposting. Key challenges and research opportunities are identified, particularly concerning the physiological and toxicological processes involved, to guide future efforts aimed at ensuring the scalability and sustainability of this innovative approach.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
期刊最新文献
A holistic approach to evaluating environmental policy impact using a difference-in-differences model A quantitative assessment framework for water-related policies in large river basins Climate change unveils hidden microbial dangers Common antimicrobials disrupt early zebrafish development through immune-cardiac signaling Hypersaline organic wastewater treatment: Biotechnological advances and engineering challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1