{"title":"The Delusional Hedge Algorithm as a Model of Human Learning From Diverse Opinions.","authors":"Yun-Shiuan Chuang, Xiaojin Zhu, Timothy T Rogers","doi":"10.1111/tops.12783","DOIUrl":null,"url":null,"abstract":"<p><p>Whereas cognitive models of learning often assume direct experience with both the features of an event and with a true label or outcome, much of everyday learning arises from hearing the opinions of others, without direct access to either the experience or the ground-truth outcome. We consider how people can learn which opinions to trust in such scenarios by extending the hedge algorithm: a classic solution for learning from diverse information sources. We first introduce a semi-supervised variant we call the delusional hedge capable of learning from both supervised and unsupervised experiences. In two experiments, we examine the alignment between human judgments and predictions from the standard hedge, the delusional hedge, and a heuristic baseline model. Results indicate that humans effectively incorporate both labeled and unlabeled information in a manner consistent with the delusional hedge algorithm-suggesting that human learners not only gauge the accuracy of information sources but also their consistency with other reliable sources. The findings advance our understanding of human learning from diverse opinions, with implications for the development of algorithms that better capture how people learn to weigh conflicting information sources.</p>","PeriodicalId":47822,"journal":{"name":"Topics in Cognitive Science","volume":" ","pages":"73-87"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Cognitive Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/tops.12783","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Whereas cognitive models of learning often assume direct experience with both the features of an event and with a true label or outcome, much of everyday learning arises from hearing the opinions of others, without direct access to either the experience or the ground-truth outcome. We consider how people can learn which opinions to trust in such scenarios by extending the hedge algorithm: a classic solution for learning from diverse information sources. We first introduce a semi-supervised variant we call the delusional hedge capable of learning from both supervised and unsupervised experiences. In two experiments, we examine the alignment between human judgments and predictions from the standard hedge, the delusional hedge, and a heuristic baseline model. Results indicate that humans effectively incorporate both labeled and unlabeled information in a manner consistent with the delusional hedge algorithm-suggesting that human learners not only gauge the accuracy of information sources but also their consistency with other reliable sources. The findings advance our understanding of human learning from diverse opinions, with implications for the development of algorithms that better capture how people learn to weigh conflicting information sources.
期刊介绍:
Topics in Cognitive Science (topiCS) is an innovative new journal that covers all areas of cognitive science including cognitive modeling, cognitive neuroscience, cognitive anthropology, and cognitive science and philosophy. topiCS aims to provide a forum for: -New communities of researchers- New controversies in established areas- Debates and commentaries- Reflections and integration The publication features multiple scholarly papers dedicated to a single topic. Some of these topics will appear together in one issue, but others may appear across several issues or develop into a regular feature. Controversies or debates started in one issue may be followed up by commentaries in a later issue, etc. However, the format and origin of the topics will vary greatly.