Multifractal Spectrum Analysis for Assessing Pulmonary Nodule Malignancy.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Jove-Journal of Visualized Experiments Pub Date : 2025-01-10 DOI:10.3791/67990
Baixin Wang, YaWen Xu, Fangliang Xing, Tengxiao Liang
{"title":"Multifractal Spectrum Analysis for Assessing Pulmonary Nodule Malignancy.","authors":"Baixin Wang, YaWen Xu, Fangliang Xing, Tengxiao Liang","doi":"10.3791/67990","DOIUrl":null,"url":null,"abstract":"<p><p>Non-invasive assessment of pulmonary nodule malignancy remains a critical challenge in lung cancer diagnosis. Traditional methods often lack precision in differentiating benign from malignant nodules, particularly in the early stages. This study introduces an approach using multifractal spectrum analysis to quantitatively evaluate pulmonary nodule characteristics. A fractal-based protocol was developed to process computed tomography (CT)-digital imaging and communications in medicine (DICOM) data, enabling three-dimensional (3D) visualization and analysis of pulmonary nodule's multifractal spectrum. The method involves 3D volume reconstruction, precise ROI delineation, and calculation of fractal dimensions across multiple scales. Multifractal spectra were computed for both early-stage and late-stage lung adenocarcinoma nodules, with comparative analysis performed using data tip tool quantification. Analysis revealed that the fractal dimension of a pulmonary nodule's 3D digital matrix varies continuously with different voxel scales, forming a distinctive multifractal spectrum. Significant differences were observed between early-stage and late-stage nodules. Late-stage nodules demonstrated a wider scale range (longer X-axis) and higher extreme points in their multifractal spectra. These distinctions were quantitatively confirmed, indicating the method's potential for precise staging. The multifractal spectrum analysis provides a highly significant and precise quantitative method for staging pulmonary nodules, effectively differentiating between benign and malignant cases. This non-invasive technique shows promise for improving early diagnosis and accurate staging of lung cancer, potentially enhancing clinical decision-making in pulmonary oncology.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67990","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Non-invasive assessment of pulmonary nodule malignancy remains a critical challenge in lung cancer diagnosis. Traditional methods often lack precision in differentiating benign from malignant nodules, particularly in the early stages. This study introduces an approach using multifractal spectrum analysis to quantitatively evaluate pulmonary nodule characteristics. A fractal-based protocol was developed to process computed tomography (CT)-digital imaging and communications in medicine (DICOM) data, enabling three-dimensional (3D) visualization and analysis of pulmonary nodule's multifractal spectrum. The method involves 3D volume reconstruction, precise ROI delineation, and calculation of fractal dimensions across multiple scales. Multifractal spectra were computed for both early-stage and late-stage lung adenocarcinoma nodules, with comparative analysis performed using data tip tool quantification. Analysis revealed that the fractal dimension of a pulmonary nodule's 3D digital matrix varies continuously with different voxel scales, forming a distinctive multifractal spectrum. Significant differences were observed between early-stage and late-stage nodules. Late-stage nodules demonstrated a wider scale range (longer X-axis) and higher extreme points in their multifractal spectra. These distinctions were quantitatively confirmed, indicating the method's potential for precise staging. The multifractal spectrum analysis provides a highly significant and precise quantitative method for staging pulmonary nodules, effectively differentiating between benign and malignant cases. This non-invasive technique shows promise for improving early diagnosis and accurate staging of lung cancer, potentially enhancing clinical decision-making in pulmonary oncology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
期刊最新文献
A Modified Mouse Model of Intracranial Aneurysm Based on Hemodynamic Change and Hypertension. A Nonviral Approach to Generate Transient Chimeric Antigen Receptor T Cells Using mRNA for Cancer Immunotherapy. Assessing the Accuracy of Fitness Smartwatch Data for Cardiovascular and Physical Activity Monitoring: A Validation Study in Digital Health. In Vivo Monitoring of Transcriptional Activity During Metabolic Transition Using a Bioluminescent Reporter in Yeast. Determining Ciliary Function and Membrane Impermeability of the Pseudostratified Lung Airway Epithelium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1