Estimating the generation time for influenza transmission using household data in the United States.

IF 3 3区 医学 Q2 INFECTIOUS DISEASES Epidemics Pub Date : 2025-01-18 DOI:10.1016/j.epidem.2025.100815
Louis Yat Hin Chan, Sinead E Morris, Melissa S Stockwell, Natalie M Bowman, Edwin Asturias, Suchitra Rao, Karen Lutrick, Katherine D Ellingson, Huong Q Nguyen, Yvonne Maldonado, Son H McLaren, Ellen Sano, Jessica E Biddle, Sarah E Smith-Jeffcoat, Matthew Biggerstaff, Melissa A Rolfes, H Keipp Talbot, Carlos G Grijalva, Rebecca K Borchering, Alexandra M Mellis
{"title":"Estimating the generation time for influenza transmission using household data in the United States.","authors":"Louis Yat Hin Chan, Sinead E Morris, Melissa S Stockwell, Natalie M Bowman, Edwin Asturias, Suchitra Rao, Karen Lutrick, Katherine D Ellingson, Huong Q Nguyen, Yvonne Maldonado, Son H McLaren, Ellen Sano, Jessica E Biddle, Sarah E Smith-Jeffcoat, Matthew Biggerstaff, Melissa A Rolfes, H Keipp Talbot, Carlos G Grijalva, Rebecca K Borchering, Alexandra M Mellis","doi":"10.1016/j.epidem.2025.100815","DOIUrl":null,"url":null,"abstract":"<p><p>The generation time, representing the interval between infections in primary and secondary cases, is essential for understanding and predicting the transmission dynamics of seasonal influenza, including the real-time effective reproduction number (Rt). However, comprehensive generation time estimates for seasonal influenza, especially since the 2009 influenza pandemic, are lacking. We estimated the generation time utilizing data from a 7-site case-ascertained household study in the United States over two influenza seasons, 2021/2022 and 2022/2023. More than 200 individuals who tested positive for influenza and their household contacts were enrolled within 7 days of the first illness in the household. All participants were prospectively followed for 10 days, completing daily symptom diaries and collecting nasal swabs, which were then tested for influenza via RT-PCR. We analyzed these data by modifying a previously published Bayesian data augmentation approach that imputes infection times of cases to obtain both intrinsic (assuming no susceptible depletion) and realized (observed within household) generation times. We assessed the robustness of the generation time estimate by varying the incubation period, and generated estimates of the proportion of transmission occurring before symptomatic onset, the infectious period, and the latent period. We estimated a mean intrinsic generation time of 3.2 (95 % credible interval, CrI: 2.9-3.6) days, with a realized household generation time of 2.8 (95 % CrI: 2.7-3.0) days. The generation time exhibited limited sensitivity to incubation period variation. Estimates of the proportion of transmission that occurred before symptom onset, the infectious period, and the latent period were sensitive to variations in the incubation period. Our study contributes to the ongoing efforts to refine estimates of the generation time for influenza. Our estimates, derived from recent data following the COVID-19 pandemic, are consistent with previous pre-pandemic estimates, and will be incorporated into real-time Rt estimation efforts.</p>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"50 ","pages":"100815"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.epidem.2025.100815","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

The generation time, representing the interval between infections in primary and secondary cases, is essential for understanding and predicting the transmission dynamics of seasonal influenza, including the real-time effective reproduction number (Rt). However, comprehensive generation time estimates for seasonal influenza, especially since the 2009 influenza pandemic, are lacking. We estimated the generation time utilizing data from a 7-site case-ascertained household study in the United States over two influenza seasons, 2021/2022 and 2022/2023. More than 200 individuals who tested positive for influenza and their household contacts were enrolled within 7 days of the first illness in the household. All participants were prospectively followed for 10 days, completing daily symptom diaries and collecting nasal swabs, which were then tested for influenza via RT-PCR. We analyzed these data by modifying a previously published Bayesian data augmentation approach that imputes infection times of cases to obtain both intrinsic (assuming no susceptible depletion) and realized (observed within household) generation times. We assessed the robustness of the generation time estimate by varying the incubation period, and generated estimates of the proportion of transmission occurring before symptomatic onset, the infectious period, and the latent period. We estimated a mean intrinsic generation time of 3.2 (95 % credible interval, CrI: 2.9-3.6) days, with a realized household generation time of 2.8 (95 % CrI: 2.7-3.0) days. The generation time exhibited limited sensitivity to incubation period variation. Estimates of the proportion of transmission that occurred before symptom onset, the infectious period, and the latent period were sensitive to variations in the incubation period. Our study contributes to the ongoing efforts to refine estimates of the generation time for influenza. Our estimates, derived from recent data following the COVID-19 pandemic, are consistent with previous pre-pandemic estimates, and will be incorporated into real-time Rt estimation efforts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Epidemics
Epidemics INFECTIOUS DISEASES-
CiteScore
6.00
自引率
7.90%
发文量
92
审稿时长
140 days
期刊介绍: Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.
期刊最新文献
Estimating the generation time for influenza transmission using household data in the United States. Reconstructing the first COVID-19 pandemic wave with minimal data in England. Retrospective modelling of the disease and mortality burden of the 1918-1920 influenza pandemic in Zurich, Switzerland. Flusion: Integrating multiple data sources for accurate influenza predictions. Infectious diseases: Household modeling with missing data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1