Smaller sizes of polyethylene terephthalate microplastics mainly stimulate heterotrophic N2O production in aerobic granular sludge systems

IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research X Pub Date : 2024-12-27 DOI:10.1016/j.wroa.2024.100299
Yingrui Liu , Yanying He , Qian Lu , Tingting Zhu , Yufen Wang , Yindong Tong , Yingxin Zhao , Bing-Jie Ni , Yiwen Liu
{"title":"Smaller sizes of polyethylene terephthalate microplastics mainly stimulate heterotrophic N2O production in aerobic granular sludge systems","authors":"Yingrui Liu ,&nbsp;Yanying He ,&nbsp;Qian Lu ,&nbsp;Tingting Zhu ,&nbsp;Yufen Wang ,&nbsp;Yindong Tong ,&nbsp;Yingxin Zhao ,&nbsp;Bing-Jie Ni ,&nbsp;Yiwen Liu","doi":"10.1016/j.wroa.2024.100299","DOIUrl":null,"url":null,"abstract":"<div><div>Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (N<sub>2</sub>O) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs). Mainstream aerobic granular sludge (AGS) systems possess potentially strong N<sub>2</sub>O-sink capability, which may be reduced by PET MPs stress through altering N<sub>2</sub>O-contributing pathways, electron transfer, and microbial community structures. In this study, the effects of PET MPs with two common particle sizes of effluent from WWTPs (0.1 and 0.5 mm) on N<sub>2</sub>O turnovers, production pathways and N<sub>2</sub>O-sink capability were systematically disclosed in AGS systems by a series of biochemical tests and molecular biological means to achieve the goal of carbon neutrality. The results indicated that 0.1 mm PET MPs could more significantly stimulate N<sub>2</sub>O production in AGS systems by inhibiting denitrifying metabolism, compared with control and 0.5 mm PET MPs systems. Specifically, 0.1 mm PET MPs slightly increased the relative abundance of <em>Nitrosomonas</em>, reducing N<sub>2</sub>O yields via promoting the hydroxylamine (NH<sub>2</sub>OH) oxidation pathway during nitrification. Also, 0.1 mm PET MPs inhibited the electron transport system activities and the relative abundance of N<sub>2</sub>O reductase, hindering N<sub>2</sub>O reduction during denitrification. Most importantly, 0.1 mm PET MPs more apparently reduced the N<sub>2</sub>O-sink capability based on the ratio of N<sub>2</sub>O reductase gene and nitrite reductase gene.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"27 ","pages":"Article 100299"},"PeriodicalIF":7.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914724000884","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (N2O) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs). Mainstream aerobic granular sludge (AGS) systems possess potentially strong N2O-sink capability, which may be reduced by PET MPs stress through altering N2O-contributing pathways, electron transfer, and microbial community structures. In this study, the effects of PET MPs with two common particle sizes of effluent from WWTPs (0.1 and 0.5 mm) on N2O turnovers, production pathways and N2O-sink capability were systematically disclosed in AGS systems by a series of biochemical tests and molecular biological means to achieve the goal of carbon neutrality. The results indicated that 0.1 mm PET MPs could more significantly stimulate N2O production in AGS systems by inhibiting denitrifying metabolism, compared with control and 0.5 mm PET MPs systems. Specifically, 0.1 mm PET MPs slightly increased the relative abundance of Nitrosomonas, reducing N2O yields via promoting the hydroxylamine (NH2OH) oxidation pathway during nitrification. Also, 0.1 mm PET MPs inhibited the electron transport system activities and the relative abundance of N2O reductase, hindering N2O reduction during denitrification. Most importantly, 0.1 mm PET MPs more apparently reduced the N2O-sink capability based on the ratio of N2O reductase gene and nitrite reductase gene.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research X
Water Research X Environmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍: Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.
期刊最新文献
Making waves: Rethinking our mission for N2O emissions at WRRFs New understanding of microbial growth cycle for efficient waste-activated sludge disposal by preserving microbial self-degradation activity during the decline phase Layer-by-layer synthesis of copper hexacyanoferrate on 3D-printed scaffolds for efficient ammonium recovery Making waves: Generative artificial intelligence in water distribution networks: Opportunities and challenges Lake dissolved organic matters seasonal variations is a main driver of N2O emission: In molecular insights by using FT-ICR MS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1