Making waves: Generative artificial intelligence in water distribution networks: Opportunities and challenges

IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research X Pub Date : 2025-02-13 DOI:10.1016/j.wroa.2025.100316
Ridwan Taiwo , Abdul-Mugis Yussif , Tarek Zayed
{"title":"Making waves: Generative artificial intelligence in water distribution networks: Opportunities and challenges","authors":"Ridwan Taiwo ,&nbsp;Abdul-Mugis Yussif ,&nbsp;Tarek Zayed","doi":"10.1016/j.wroa.2025.100316","DOIUrl":null,"url":null,"abstract":"<div><div>Water distribution networks (WDNs) face increasing challenges from aging infrastructure, population growth, and climate change, necessitating innovative technological solutions. This study examines the integration of Generative Artificial Intelligence (GenAI) in WDNs, including both conventional and reclaimed water systems. Through a comprehensive analysis of current literature and emerging applications, the study identifies key opportunities in near-future applications focusing on enhancing information retrieval through advanced document processing, improving water quality management via real-time monitoring and visualization, implementing predictive maintenance strategies through pattern recognition, and optimizing real-time operational control through adaptive algorithms. Results also demonstrate that GenAI can transform WDN operations through advanced visualization, scenario generation, and adaptive optimization capabilities, particularly in far-future applications such as demand forecasting, emergency response, and network design optimization. The analysis reveals significant challenges, including data quality and availability issues, particularly in non-English speaking regions, scalability constraints in large-scale networks, the critical need for water professionals with hybrid expertise in both traditional engineering and AI systems, and complex regulatory requirements that vary significantly across the globe. The study also explores unique applications in reclaimed WDNs, particularly in quality control, treatment optimization, and stakeholder engagement. These findings provide water utilities, policymakers, and researchers with valuable insights for implementing GenAI technologies while balancing technological advancement with human expertise and social responsibility.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"28 ","pages":"Article 100316"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914725000155","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Water distribution networks (WDNs) face increasing challenges from aging infrastructure, population growth, and climate change, necessitating innovative technological solutions. This study examines the integration of Generative Artificial Intelligence (GenAI) in WDNs, including both conventional and reclaimed water systems. Through a comprehensive analysis of current literature and emerging applications, the study identifies key opportunities in near-future applications focusing on enhancing information retrieval through advanced document processing, improving water quality management via real-time monitoring and visualization, implementing predictive maintenance strategies through pattern recognition, and optimizing real-time operational control through adaptive algorithms. Results also demonstrate that GenAI can transform WDN operations through advanced visualization, scenario generation, and adaptive optimization capabilities, particularly in far-future applications such as demand forecasting, emergency response, and network design optimization. The analysis reveals significant challenges, including data quality and availability issues, particularly in non-English speaking regions, scalability constraints in large-scale networks, the critical need for water professionals with hybrid expertise in both traditional engineering and AI systems, and complex regulatory requirements that vary significantly across the globe. The study also explores unique applications in reclaimed WDNs, particularly in quality control, treatment optimization, and stakeholder engagement. These findings provide water utilities, policymakers, and researchers with valuable insights for implementing GenAI technologies while balancing technological advancement with human expertise and social responsibility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research X
Water Research X Environmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍: Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.
期刊最新文献
Making waves: Rethinking our mission for N2O emissions at WRRFs New understanding of microbial growth cycle for efficient waste-activated sludge disposal by preserving microbial self-degradation activity during the decline phase Making waves: Generative artificial intelligence in water distribution networks: Opportunities and challenges Lake dissolved organic matters seasonal variations is a main driver of N2O emission: In molecular insights by using FT-ICR MS Heterogeneous microstructure induces floatation in high-rate anammox granules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1