Evaluating a Hearing Loop Implementation for Live Orchestral Music.

IF 2.6 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY Ear and Hearing Pub Date : 2025-01-27 DOI:10.1097/AUD.0000000000001626
Sean McWeeny, Laurel J Trainor, Steve Armstrong, Dan Bosnyak, Hany Tawfik, Ian C Bruce
{"title":"Evaluating a Hearing Loop Implementation for Live Orchestral Music.","authors":"Sean McWeeny, Laurel J Trainor, Steve Armstrong, Dan Bosnyak, Hany Tawfik, Ian C Bruce","doi":"10.1097/AUD.0000000000001626","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Live music creates a sense of connectedness in older adults, which can help alleviate the social isolation frequently associated with hearing loss and aging. However, most hearing-aid (HA) users are dissatisfied with the sound quality of live music and rate sound quality as important to them. Assistive listening systems are frequently independent of a user's HAs and fall short in tailoring to each individual's hearing loss. The present study thus tested whether the use of a hearing loop would improve sound quality during an orchestral concert.</p><p><strong>Design: </strong>Participants with symmetrical moderate-to-severe hearing loss were assigned to use Sonova-provided HAs with a telecoil (n = 20) or their own HAs (n = 8) without a telecoil during a performance by the Hamilton Philharmonic Orchestra. We changed loop input to use one of three feeds every 5 minutes: a mix of microphones from the hall's standard assistive feed on the first balcony (house condition), a mix of microphones located on the stage (stage condition), or no input to the loop (no feed). After each 5-minute interval, we collected sound quality and naturalness ratings for the previous 5 minutes.</p><p><strong>Results: </strong>Sound quality and naturalness ratings were highly related (rRM = 0.81), though each provided unique insight. Repeated measures analysis of variance found significant differences among the loop feed conditions for sound quality and naturalness, with the no feed condition significantly outperforming the house condition on sound quality [t(18) = -3.73, adj. p = 0.005] and naturalness [t(18) = -4.15, adj. p = 0.002]. Mixed effects models allowed us to retain the richness of a repeated observation dataset and provided point estimates of the overall quality and naturalness among conditions; however, assumption violations of normality and homoskedasticity prevented further interpretation.</p><p><strong>Conclusions: </strong>Though HA-integrated assistive listening systems are a promising option for improving live music for people with hearing loss, a hearing loop does not seem to be crucial for orchestral music. Future directions include improving lyric understanding for music with vocals and customizing user experience via Bluetooth Low Energy Audio systems.</p>","PeriodicalId":55172,"journal":{"name":"Ear and Hearing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ear and Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/AUD.0000000000001626","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Live music creates a sense of connectedness in older adults, which can help alleviate the social isolation frequently associated with hearing loss and aging. However, most hearing-aid (HA) users are dissatisfied with the sound quality of live music and rate sound quality as important to them. Assistive listening systems are frequently independent of a user's HAs and fall short in tailoring to each individual's hearing loss. The present study thus tested whether the use of a hearing loop would improve sound quality during an orchestral concert.

Design: Participants with symmetrical moderate-to-severe hearing loss were assigned to use Sonova-provided HAs with a telecoil (n = 20) or their own HAs (n = 8) without a telecoil during a performance by the Hamilton Philharmonic Orchestra. We changed loop input to use one of three feeds every 5 minutes: a mix of microphones from the hall's standard assistive feed on the first balcony (house condition), a mix of microphones located on the stage (stage condition), or no input to the loop (no feed). After each 5-minute interval, we collected sound quality and naturalness ratings for the previous 5 minutes.

Results: Sound quality and naturalness ratings were highly related (rRM = 0.81), though each provided unique insight. Repeated measures analysis of variance found significant differences among the loop feed conditions for sound quality and naturalness, with the no feed condition significantly outperforming the house condition on sound quality [t(18) = -3.73, adj. p = 0.005] and naturalness [t(18) = -4.15, adj. p = 0.002]. Mixed effects models allowed us to retain the richness of a repeated observation dataset and provided point estimates of the overall quality and naturalness among conditions; however, assumption violations of normality and homoskedasticity prevented further interpretation.

Conclusions: Though HA-integrated assistive listening systems are a promising option for improving live music for people with hearing loss, a hearing loop does not seem to be crucial for orchestral music. Future directions include improving lyric understanding for music with vocals and customizing user experience via Bluetooth Low Energy Audio systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ear and Hearing
Ear and Hearing 医学-耳鼻喉科学
CiteScore
5.90
自引率
10.80%
发文量
207
审稿时长
6-12 weeks
期刊介绍: From the basic science of hearing and balance disorders to auditory electrophysiology to amplification and the psychological factors of hearing loss, Ear and Hearing covers all aspects of auditory and vestibular disorders. This multidisciplinary journal consolidates the various factors that contribute to identification, remediation, and audiologic and vestibular rehabilitation. It is the one journal that serves the diverse interest of all members of this professional community -- otologists, audiologists, educators, and to those involved in the design, manufacture, and distribution of amplification systems. The original articles published in the journal focus on assessment, diagnosis, and management of auditory and vestibular disorders.
期刊最新文献
Improving the Predictive Strength of Better-Ear Four-Frequency Pure-Tone Average With the Addition of the Tinnitus and Hearing Survey-Hearing Subscale. Machine-Learning Predictions of Cochlear Implant Functional Outcomes: A Systematic Review. Evaluating a Hearing Loop Implementation for Live Orchestral Music. The Performance of the Acoustic Change Complex Versus Psychophysical Behavioral Measures: A Systematic Review of Measurements in Adults. Wearing Hearing Protection Makes Me Worse at My Job: Impacts of Hearing Protection Use on Sensorimotor Tracking Performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1