{"title":"Melatonin, modulation of hypothalamic activity, and reproduction.","authors":"Santiago Elías Charif, Verónica Berta Dorfman","doi":"10.1016/bs.vh.2024.06.003","DOIUrl":null,"url":null,"abstract":"<p><p>Light is the most reliable environmental cue allowing animals to breed successfully when conditions are optimal. In seasonal breeders, photoperiod (length of daylight) information is sensed by the eyes and transmitted to the suprachiasmatic nucleus, the master clock region located in the hypothalamus. This structure has a 24-h firing rhythm involving a cycle of clock protein synthesis and degradation, and provides the timing to synchronize the synthesis and release of melatonin, the chemical signal that transduces the photoperiod information. The enzyme arylalkylamine N-acetyltransferase, responsible for melatonin synthesis in the pineal gland, is modulated by environmental light. Melatonin is secreted during the dark hours of the night to blood circulation and cerebrospinal fluid conveying photoperiod information to other tissues. Melatonin exerts its action by binding to specific membrane receptors MT1 and MT2, and can modulate several pathways including neurotransmitters, and hormones like kisspeptin, the gonadotropin-inhibitory hormone, and thyroid hormones, all of them impacting on gonadotropin-releasing hormone (GnRH) secretion. Then, GnRH will modulate in turn the reproductive axis. In conclusion, acting as a transducer of photoperiod information, this hormone exerts precisely timed activation of different pathways that modulate seasonal breeding ensuring optimal conditions for reproduction.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"127 ","pages":"283-303"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitamins and Hormones","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.vh.2024.06.003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Light is the most reliable environmental cue allowing animals to breed successfully when conditions are optimal. In seasonal breeders, photoperiod (length of daylight) information is sensed by the eyes and transmitted to the suprachiasmatic nucleus, the master clock region located in the hypothalamus. This structure has a 24-h firing rhythm involving a cycle of clock protein synthesis and degradation, and provides the timing to synchronize the synthesis and release of melatonin, the chemical signal that transduces the photoperiod information. The enzyme arylalkylamine N-acetyltransferase, responsible for melatonin synthesis in the pineal gland, is modulated by environmental light. Melatonin is secreted during the dark hours of the night to blood circulation and cerebrospinal fluid conveying photoperiod information to other tissues. Melatonin exerts its action by binding to specific membrane receptors MT1 and MT2, and can modulate several pathways including neurotransmitters, and hormones like kisspeptin, the gonadotropin-inhibitory hormone, and thyroid hormones, all of them impacting on gonadotropin-releasing hormone (GnRH) secretion. Then, GnRH will modulate in turn the reproductive axis. In conclusion, acting as a transducer of photoperiod information, this hormone exerts precisely timed activation of different pathways that modulate seasonal breeding ensuring optimal conditions for reproduction.
期刊介绍:
First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. In the early days of the serial, the subjects of vitamins and hormones were quite distinct. The Editorial Board now reflects expertise in the field of hormone action, vitamin action, X-ray crystal structure, physiology, and enzyme mechanisms. Vitamins and Hormones continues to publish cutting-edge reviews of interest to endocrinologists, biochemists, nutritionists, pharmacologists, cell biologists, and molecular biologists. Others interested in the structure and function of biologically active molecules like hormones and vitamins will, as always, turn to this series for comprehensive reviews by leading contributors to this and related disciplines.