Is There Novel 18F-FDG Biodistribution in the Digital PET/CT Era? A Real-World Data Analysis.

IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Cancer Biotherapy and Radiopharmaceuticals Pub Date : 2025-01-27 DOI:10.1089/cbr.2024.0226
Gündüzalp Buğrahan Babacan, Filiz Özülker, Oğuzhan Şahin, Osman Güven, Osman Kanatsız, Göksel Alçın, Tamer Özülker
{"title":"Is There Novel <sup>18</sup>F-FDG Biodistribution in the Digital PET/CT Era? A Real-World Data Analysis.","authors":"Gündüzalp Buğrahan Babacan, Filiz Özülker, Oğuzhan Şahin, Osman Güven, Osman Kanatsız, Göksel Alçın, Tamer Özülker","doi":"10.1089/cbr.2024.0226","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> This retrospective multicenter study investigated the biodistribution of Fluorodeoxyglucose (<sup>18</sup>F-FDG) in the positron emission tomography (PET)/computed tomography (CT) in digital PET/CT (dPET) compared to analog PET/CT (aPET), focusing differences in physiological uptake in reference and small structures across various scanner models. <b><i>Materials and Methods:</i></b> One hundred thirty patients with similar preimaging conditions underwent both dPET and aPET imaging within 6 months. Visual evaluations and paired comparative analyses of semiquantitative parameters were performed for small and reference structures. <b><i>Results:</i></b> <sup>18</sup>F-FDG uptake was higher in both reference and small structures for dPET compared to three different aPET scanners. The Siemens mCT20-4R (mCT20) demonstrated comparable results to dPET. Notably, mCT20 had higher standardized uptake value (SUV<sub>max</sub>) for the conus medullaris (CM) (3.20 vs. 2.76). CM was most highly visible with dPET on visual evaluation by physicians. <b><i>Conclusions:</i></b> Digital PET/CT provides higher SUV values in both small and reference structures. This leads to improved visualization of <sup>18</sup>F-FDG physiological biodistribution. Given the growing adoption of dPET technology, these advancements should be carefully considered in image interpretation and clinical research.</p>","PeriodicalId":55277,"journal":{"name":"Cancer Biotherapy and Radiopharmaceuticals","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biotherapy and Radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2024.0226","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This retrospective multicenter study investigated the biodistribution of Fluorodeoxyglucose (18F-FDG) in the positron emission tomography (PET)/computed tomography (CT) in digital PET/CT (dPET) compared to analog PET/CT (aPET), focusing differences in physiological uptake in reference and small structures across various scanner models. Materials and Methods: One hundred thirty patients with similar preimaging conditions underwent both dPET and aPET imaging within 6 months. Visual evaluations and paired comparative analyses of semiquantitative parameters were performed for small and reference structures. Results: 18F-FDG uptake was higher in both reference and small structures for dPET compared to three different aPET scanners. The Siemens mCT20-4R (mCT20) demonstrated comparable results to dPET. Notably, mCT20 had higher standardized uptake value (SUVmax) for the conus medullaris (CM) (3.20 vs. 2.76). CM was most highly visible with dPET on visual evaluation by physicians. Conclusions: Digital PET/CT provides higher SUV values in both small and reference structures. This leads to improved visualization of 18F-FDG physiological biodistribution. Given the growing adoption of dPET technology, these advancements should be carefully considered in image interpretation and clinical research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
2.90%
发文量
87
审稿时长
3 months
期刊介绍: Cancer Biotherapy and Radiopharmaceuticals is the established peer-reviewed journal, with over 25 years of cutting-edge content on innovative therapeutic investigations to ultimately improve cancer management. It is the only journal with the specific focus of cancer biotherapy and is inclusive of monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapies. The Journal includes extensive reporting on advancements in radioimmunotherapy, and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments.
期刊最新文献
Is There Novel 18F-FDG Biodistribution in the Digital PET/CT Era? A Real-World Data Analysis. IL-21 and IL-33 May Be Effective Biomarkers to Predict the Efficacy of PD-1 Monoclonal Antibody for Advanced Cholangiocarcinoma. Exploring the Role of [68Ga]Ga-DOTAGA-IAC and Comparison of Its Diagnostic Performance with [18F]F-FDG PET/CT in Radioiodine Refractory Differentiated Thyroid Carcinoma. Generalized Seizure as an Acute post-Lu177-DOTATATE Side Effect in a Case of Recurrent Meningioma. Identification of a Vascular Endothelial Growth Factor Receptor-3 Binding Peptide TMVP1 for Enhancing Drug Delivery Efficiency and Therapeutic Efficacy Against Tumor Lymphangiogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1