Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records

IF 4.1 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Medical Informatics Pub Date : 2025-01-17 DOI:10.1016/j.ijmedinf.2025.105797
Liqin Wang , John Novoa-Laurentiev , Claire Cook , Shruthi Srivatsan , Yining Hua , Jie Yang , Eli Miloslavsky , Hyon K. Choi , Li Zhou , Zachary S. Wallace
{"title":"Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records","authors":"Liqin Wang ,&nbsp;John Novoa-Laurentiev ,&nbsp;Claire Cook ,&nbsp;Shruthi Srivatsan ,&nbsp;Yining Hua ,&nbsp;Jie Yang ,&nbsp;Eli Miloslavsky ,&nbsp;Hyon K. Choi ,&nbsp;Li Zhou ,&nbsp;Zachary S. Wallace","doi":"10.1016/j.ijmedinf.2025.105797","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.</div></div><div><h3>Methods</h3><div>We examined the Mass General Brigham (MGB) repository of clinical documentation from 12/1/1979 to 5/11/2021, using expert-curated keywords and ICD codes to identify a large cohort of potential AAV cases. Three labeled datasets (I, II, III) were created, each containing note sections. We trained and evaluated a range of machine learning and deep learning algorithms for note-level classification, using metrics like positive predictive value (PPV), sensitivity, F-score, area under the receiver operating characteristic curve (AUROC), and area under the precision and recall curve (AUPRC). The hierarchical attention network (HAN) was further evaluated for its ability to classify AAV cases at the patient-level, compared with rule-based algorithms in 2000 randomly chosen samples.</div></div><div><h3>Results</h3><div>Datasets I, II, and III comprised 6000, 3008, and 7500 note sections, respectively. HAN achieved the highest AUROC in all three datasets, with scores of 0.983, 0.991, and 0.991. The deep learning approach also had among the highest PPVs across the three datasets (0.941, 0.954, and 0.800, respectively). In a test cohort of 2000 cases, the HAN model achieved a PPV of 0.262 and an estimated sensitivity of 0.975. Compared to the best rule-based algorithm, HAN identified six additional AAV cases, representing 13% of the total.</div></div><div><h3>Conclusion</h3><div>The deep learning model effectively classifies clinical note sections for AAV diagnosis. Its application to EHR notes can potentially uncover additional cases missed by traditional rule-based methods.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"196 ","pages":"Article 105797"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505625000140","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.

Methods

We examined the Mass General Brigham (MGB) repository of clinical documentation from 12/1/1979 to 5/11/2021, using expert-curated keywords and ICD codes to identify a large cohort of potential AAV cases. Three labeled datasets (I, II, III) were created, each containing note sections. We trained and evaluated a range of machine learning and deep learning algorithms for note-level classification, using metrics like positive predictive value (PPV), sensitivity, F-score, area under the receiver operating characteristic curve (AUROC), and area under the precision and recall curve (AUPRC). The hierarchical attention network (HAN) was further evaluated for its ability to classify AAV cases at the patient-level, compared with rule-based algorithms in 2000 randomly chosen samples.

Results

Datasets I, II, and III comprised 6000, 3008, and 7500 note sections, respectively. HAN achieved the highest AUROC in all three datasets, with scores of 0.983, 0.991, and 0.991. The deep learning approach also had among the highest PPVs across the three datasets (0.941, 0.954, and 0.800, respectively). In a test cohort of 2000 cases, the HAN model achieved a PPV of 0.262 and an estimated sensitivity of 0.975. Compared to the best rule-based algorithm, HAN identified six additional AAV cases, representing 13% of the total.

Conclusion

The deep learning model effectively classifies clinical note sections for AAV diagnosis. Its application to EHR notes can potentially uncover additional cases missed by traditional rule-based methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习和电子健康记录识别anca相关血管炎队列
背景:anca相关性血管炎(AAV)是一种罕见但严重的疾病。使用索赔数据的传统病例识别方法可能会耗费大量时间,并且可能错过重要的子组。我们假设分析电子健康记录(EHR)的深度学习模型可以更准确地识别AAV病例。方法:我们检查了1979年1月12日至2021年5月11日麻省总医院(MGB)临床文献库,使用专家策划的关键词和ICD代码来识别大量潜在的AAV病例。创建了三个标记数据集(I, II, III),每个数据集包含注释部分。我们训练并评估了一系列用于笔记级分类的机器学习和深度学习算法,使用的指标包括正预测值(PPV)、灵敏度、f分、接收者工作特征曲线下面积(AUROC)和精度和召回率曲线下面积(AUPRC)。在2000个随机选择的样本中,与基于规则的算法相比,进一步评估了分层注意网络(HAN)在患者层面对AAV病例进行分类的能力。结果:数据集I、II和III分别包含6000、3008和7500个注释部分。HAN在三个数据集中的AUROC得分最高,分别为0.983、0.991和0.991。深度学习方法在三个数据集上的ppv也最高(分别为0.941、0.954和0.800)。在2000例的测试队列中,HAN模型的PPV为0.262,估计灵敏度为0.975。与最佳的基于规则的算法相比,HAN确定了6例额外的AAV病例,占总数的13%。结论:深度学习模型能有效地对AAV的临床记录进行分类。将其应用于电子病历记录可能会发现传统的基于规则的方法遗漏的其他病例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
期刊最新文献
Fuzzy logic in respiratory medicine: a systematic review of predictive and diagnostic applications. Development of a Validation and Inspection Tool for Armband-based Lifelog data (VITAL) to facilitate the clinical use of wearable health data: A prototype and usability evaluation Guideline-based, but not error-free: Multilingual risks in AI-powered patient counseling on gallstones. PRE2DUP-R, advanced, open science method to estimate drug use periods for pharmacoepidemiology. Integrating semantic retrieval and chain-of-thought reasoning in small language models for SNOMED CT normalization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1