Liqin Wang , John Novoa-Laurentiev , Claire Cook , Shruthi Srivatsan , Yining Hua , Jie Yang , Eli Miloslavsky , Hyon K. Choi , Li Zhou , Zachary S. Wallace
{"title":"Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records","authors":"Liqin Wang , John Novoa-Laurentiev , Claire Cook , Shruthi Srivatsan , Yining Hua , Jie Yang , Eli Miloslavsky , Hyon K. Choi , Li Zhou , Zachary S. Wallace","doi":"10.1016/j.ijmedinf.2025.105797","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.</div></div><div><h3>Methods</h3><div>We examined the Mass General Brigham (MGB) repository of clinical documentation from 12/1/1979 to 5/11/2021, using expert-curated keywords and ICD codes to identify a large cohort of potential AAV cases. Three labeled datasets (I, II, III) were created, each containing note sections. We trained and evaluated a range of machine learning and deep learning algorithms for note-level classification, using metrics like positive predictive value (PPV), sensitivity, F-score, area under the receiver operating characteristic curve (AUROC), and area under the precision and recall curve (AUPRC). The hierarchical attention network (HAN) was further evaluated for its ability to classify AAV cases at the patient-level, compared with rule-based algorithms in 2000 randomly chosen samples.</div></div><div><h3>Results</h3><div>Datasets I, II, and III comprised 6000, 3008, and 7500 note sections, respectively. HAN achieved the highest AUROC in all three datasets, with scores of 0.983, 0.991, and 0.991. The deep learning approach also had among the highest PPVs across the three datasets (0.941, 0.954, and 0.800, respectively). In a test cohort of 2000 cases, the HAN model achieved a PPV of 0.262 and an estimated sensitivity of 0.975. Compared to the best rule-based algorithm, HAN identified six additional AAV cases, representing 13% of the total.</div></div><div><h3>Conclusion</h3><div>The deep learning model effectively classifies clinical note sections for AAV diagnosis. Its application to EHR notes can potentially uncover additional cases missed by traditional rule-based methods.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"196 ","pages":"Article 105797"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505625000140","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.
Methods
We examined the Mass General Brigham (MGB) repository of clinical documentation from 12/1/1979 to 5/11/2021, using expert-curated keywords and ICD codes to identify a large cohort of potential AAV cases. Three labeled datasets (I, II, III) were created, each containing note sections. We trained and evaluated a range of machine learning and deep learning algorithms for note-level classification, using metrics like positive predictive value (PPV), sensitivity, F-score, area under the receiver operating characteristic curve (AUROC), and area under the precision and recall curve (AUPRC). The hierarchical attention network (HAN) was further evaluated for its ability to classify AAV cases at the patient-level, compared with rule-based algorithms in 2000 randomly chosen samples.
Results
Datasets I, II, and III comprised 6000, 3008, and 7500 note sections, respectively. HAN achieved the highest AUROC in all three datasets, with scores of 0.983, 0.991, and 0.991. The deep learning approach also had among the highest PPVs across the three datasets (0.941, 0.954, and 0.800, respectively). In a test cohort of 2000 cases, the HAN model achieved a PPV of 0.262 and an estimated sensitivity of 0.975. Compared to the best rule-based algorithm, HAN identified six additional AAV cases, representing 13% of the total.
Conclusion
The deep learning model effectively classifies clinical note sections for AAV diagnosis. Its application to EHR notes can potentially uncover additional cases missed by traditional rule-based methods.
期刊介绍:
International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings.
The scope of journal covers:
Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.;
Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc.
Educational computer based programs pertaining to medical informatics or medicine in general;
Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.