Machine learning for predicting outcomes of transcatheter aortic valve implantation: A systematic review

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Medical Informatics Pub Date : 2025-02-16 DOI:10.1016/j.ijmedinf.2025.105840
Ruba Sulaiman , Md.Ahasan Atick Faisal , Maram Hasan , Muhammad E.H. Chowdhury , Faycal Bensaali , Abdulrahman Alnabti , Huseyin C. Yalcin
{"title":"Machine learning for predicting outcomes of transcatheter aortic valve implantation: A systematic review","authors":"Ruba Sulaiman ,&nbsp;Md.Ahasan Atick Faisal ,&nbsp;Maram Hasan ,&nbsp;Muhammad E.H. Chowdhury ,&nbsp;Faycal Bensaali ,&nbsp;Abdulrahman Alnabti ,&nbsp;Huseyin C. Yalcin","doi":"10.1016/j.ijmedinf.2025.105840","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Transcatheter aortic valve implantation (TAVI) therapy has demonstrated its clear benefits such as low invasiveness, to treat aortic stenosis. Despite associated benefits, still post-procedural complications might occur. The severity of these complications depends on pre-existing clinical conditions and patient specific complex anatomical features. Accurate prediction of TAVI outcomes will assist in the precise risk assessment for patients undergoing TAVI. Throughout the past decade, different machine learning (ML) approaches have been utilized to predict outcomes of TAVI. This systematic review aims to assess the application of ML in TAVI for the purpose of outcome prediction<strong>.</strong></div></div><div><h3>Methods</h3><div>Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was adapted for searching the PubMed and Scopus databases on ML use in TAVI outcomes prediction. Once the studies that meet the inclusion criteria were identified, data from these studies were retrieved and were further examined. 17 parameters relevant to TAVI outcomes were carefully identified for assessing the quality of the included studies.</div></div><div><h3>Results</h3><div>Following the search of the mentioned databases, 78 studies were initially retrieved, and 17 of these studies were included for further assessment. Most of the included studies focused on mortality prediction, utilizing datasets of varying sizes and diverse ML algorithms. The most employed ML algorithms were random forest, logistics regression, and gradient boosting. Among the studied parameters, serum creatinine, age, BMI, hemoglobin, and aortic valve mean gradient were identified as key predictors for TAVI outcomes. These predictors were found to be well aligned with established associations in current literature.</div></div><div><h3>Conclusion</h3><div>ML presents a promising opportunity for improving the success and safety of TAVI and enhancing patient-centered care. While currently retrospective studies with low generalizability and heterogeneity form the basis of ML TAVI research, future prospective investigations with highly heterogeneous patient TAVI cohorts will be critically important for firmly establishing the applicability of ML in predicting TAVI outcomes.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"197 ","pages":"Article 105840"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505625000577","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Transcatheter aortic valve implantation (TAVI) therapy has demonstrated its clear benefits such as low invasiveness, to treat aortic stenosis. Despite associated benefits, still post-procedural complications might occur. The severity of these complications depends on pre-existing clinical conditions and patient specific complex anatomical features. Accurate prediction of TAVI outcomes will assist in the precise risk assessment for patients undergoing TAVI. Throughout the past decade, different machine learning (ML) approaches have been utilized to predict outcomes of TAVI. This systematic review aims to assess the application of ML in TAVI for the purpose of outcome prediction.

Methods

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was adapted for searching the PubMed and Scopus databases on ML use in TAVI outcomes prediction. Once the studies that meet the inclusion criteria were identified, data from these studies were retrieved and were further examined. 17 parameters relevant to TAVI outcomes were carefully identified for assessing the quality of the included studies.

Results

Following the search of the mentioned databases, 78 studies were initially retrieved, and 17 of these studies were included for further assessment. Most of the included studies focused on mortality prediction, utilizing datasets of varying sizes and diverse ML algorithms. The most employed ML algorithms were random forest, logistics regression, and gradient boosting. Among the studied parameters, serum creatinine, age, BMI, hemoglobin, and aortic valve mean gradient were identified as key predictors for TAVI outcomes. These predictors were found to be well aligned with established associations in current literature.

Conclusion

ML presents a promising opportunity for improving the success and safety of TAVI and enhancing patient-centered care. While currently retrospective studies with low generalizability and heterogeneity form the basis of ML TAVI research, future prospective investigations with highly heterogeneous patient TAVI cohorts will be critically important for firmly establishing the applicability of ML in predicting TAVI outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
期刊最新文献
Machine learning for predicting outcomes of transcatheter aortic valve implantation: A systematic review AI-driven triage in emergency departments: A review of benefits, challenges, and future directions Predicting cancer survival at different stages: Insights from fair and explainable machine learning approaches The fading structural prominence of explanations in clinical studies Utilization, challenges, and training needs of digital health technologies: Perspectives from healthcare professionals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1