The feasibility of using machine learning to predict COVID-19 cases

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Medical Informatics Pub Date : 2025-01-23 DOI:10.1016/j.ijmedinf.2025.105786
Shan Chen , Yuanzhao Ding
{"title":"The feasibility of using machine learning to predict COVID-19 cases","authors":"Shan Chen ,&nbsp;Yuanzhao Ding","doi":"10.1016/j.ijmedinf.2025.105786","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial. This study introduces a novel approach by leveraging machine learning to predict cases and uncover critical discrepancies, focusing on African regions where reported daily cases per million often deviate significantly from machine learning-predicted cases. These findings strongly suggest widespread underreporting of cases. By identifying these gaps, our research provides valuable insights for future pandemic preparedness, improving epidemic forecasting accuracy, data reliability, and response strategies to mitigate the impact of emerging global health crises.</div></div><div><h3>Objective</h3><div>This study aims to assess the reliability of reported COVID-19 incidence data globally, particularly in underdeveloped regions, and to identify discrepancies between reported and predicted cases using machine learning methodologies.</div></div><div><h3>Methods</h3><div>Data collected from March 2020 to September 2022 included demographic, healthcare, economic, and testing-related parameters. Several machine learning models—neural networks, decision trees, random forests, cross-validation, support vector machines, and logistic regression—were employed to predict COVID-19 incidence rates. Model performance was evaluated using testing accuracy metrics.</div></div><div><h3>Results</h3><div>Testing accuracy rates for the models were as follows: neural networks (65.50 %), decision trees (63.76 %), random forests (63.33 %), cross-validation (55.92 %), support vector machines (63.62 %), and logistic regression (64.70 %). Comparative analysis using neural networks revealed significant discrepancies between reported and predicted COVID-19 cases, particularly in numerous African countries. These results suggest a considerable volume of underreported cases in regions with limited testing capabilities.</div></div><div><h3>Conclusion</h3><div>This study highlights the critical need for improved data accuracy and reporting mechanisms, especially in resource-constrained regions. International organizations and policymakers must implement strategies to enhance testing capacity and data reliability to better understand and manage the global impact of the pandemic. Our work emphasizes the potential of machine learning to identify gaps in epidemic reporting, facilitating evidence-based interventions.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"196 ","pages":"Article 105786"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505625000036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial. This study introduces a novel approach by leveraging machine learning to predict cases and uncover critical discrepancies, focusing on African regions where reported daily cases per million often deviate significantly from machine learning-predicted cases. These findings strongly suggest widespread underreporting of cases. By identifying these gaps, our research provides valuable insights for future pandemic preparedness, improving epidemic forecasting accuracy, data reliability, and response strategies to mitigate the impact of emerging global health crises.

Objective

This study aims to assess the reliability of reported COVID-19 incidence data globally, particularly in underdeveloped regions, and to identify discrepancies between reported and predicted cases using machine learning methodologies.

Methods

Data collected from March 2020 to September 2022 included demographic, healthcare, economic, and testing-related parameters. Several machine learning models—neural networks, decision trees, random forests, cross-validation, support vector machines, and logistic regression—were employed to predict COVID-19 incidence rates. Model performance was evaluated using testing accuracy metrics.

Results

Testing accuracy rates for the models were as follows: neural networks (65.50 %), decision trees (63.76 %), random forests (63.33 %), cross-validation (55.92 %), support vector machines (63.62 %), and logistic regression (64.70 %). Comparative analysis using neural networks revealed significant discrepancies between reported and predicted COVID-19 cases, particularly in numerous African countries. These results suggest a considerable volume of underreported cases in regions with limited testing capabilities.

Conclusion

This study highlights the critical need for improved data accuracy and reporting mechanisms, especially in resource-constrained regions. International organizations and policymakers must implement strategies to enhance testing capacity and data reliability to better understand and manage the global impact of the pandemic. Our work emphasizes the potential of machine learning to identify gaps in epidemic reporting, facilitating evidence-based interventions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
期刊最新文献
Machine learning for predicting outcomes of transcatheter aortic valve implantation: A systematic review AI-driven triage in emergency departments: A review of benefits, challenges, and future directions Predicting cancer survival at different stages: Insights from fair and explainable machine learning approaches The fading structural prominence of explanations in clinical studies Utilization, challenges, and training needs of digital health technologies: Perspectives from healthcare professionals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1