Epigenetic Threads of Neurodegeneration: TFAM's Intricate Role in Mitochondrial Transcription.

Aishwarya Bharathi H M, Prabitha Prabhakaran, Logesh Rajan, Narasimha M Beeraka, Bijo Mathew, Prashantha Kumar Br
{"title":"Epigenetic Threads of Neurodegeneration: TFAM's Intricate Role in Mitochondrial Transcription.","authors":"Aishwarya Bharathi H M, Prabitha Prabhakaran, Logesh Rajan, Narasimha M Beeraka, Bijo Mathew, Prashantha Kumar Br","doi":"10.2174/0118715273334342250108043032","DOIUrl":null,"url":null,"abstract":"<p><p>There is a myriad of activities that involve mitochondria that are crucial for maintaining cellular equilibrium and genetic stability. In the pathophysiology of neurodegenerative illnesses, mitochondrial transcription influences mitochondrial equilibrium, which in turn affects their biogenesis and integrity. Among the crucial proteins for keeping the genome in optimal repair is mitochondrial transcription factor A, more commonly termed TFAM. TFAM's non-specific DNA binding activity demonstrates its involvement in the control of mitochondrial DNA (mtDNA) transcription. The role of TFAM in controlling packing, stability, and replication when assessing the quantity of the mitochondrial genome is well recognised. Despite mounting evidence linking lower mtDNA copy numbers to various age-related diseases, the correlation between TFAM abundance and neurodegenerative disease remains insufficient. This review delves into the link between neurodegeneration and mitochondrial dysfunction caused by oxidative stress. Additionally, the article will go into detail about how TFAM controls mitochondrial transcription, which is responsible for encoding key components of the oxidative phosphorylation (OXPHOS) system.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715273334342250108043032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is a myriad of activities that involve mitochondria that are crucial for maintaining cellular equilibrium and genetic stability. In the pathophysiology of neurodegenerative illnesses, mitochondrial transcription influences mitochondrial equilibrium, which in turn affects their biogenesis and integrity. Among the crucial proteins for keeping the genome in optimal repair is mitochondrial transcription factor A, more commonly termed TFAM. TFAM's non-specific DNA binding activity demonstrates its involvement in the control of mitochondrial DNA (mtDNA) transcription. The role of TFAM in controlling packing, stability, and replication when assessing the quantity of the mitochondrial genome is well recognised. Despite mounting evidence linking lower mtDNA copy numbers to various age-related diseases, the correlation between TFAM abundance and neurodegenerative disease remains insufficient. This review delves into the link between neurodegeneration and mitochondrial dysfunction caused by oxidative stress. Additionally, the article will go into detail about how TFAM controls mitochondrial transcription, which is responsible for encoding key components of the oxidative phosphorylation (OXPHOS) system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Reflections on oncology in central and eastern Europe.
IF 50.5 1区 医学Annals of OncologyPub Date : 1999-01-01 DOI:
S Eckhardt
Reflections on oncology in Central and Eastern Europe
IF 50.5 1区 医学Annals of OncologyPub Date : 1999-01-01 DOI: 10.1093/annonc/10.suppl_6.S3
S. Eckhardt
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Markers and Diagnostics for Diagnosing Cerebral Infarction. Abnormality of Voltage-Gated Sodium Channels in Disease Development of the Nervous System. A Review Article. Recent Trends in Physical Therapy Interventions and Neuromodulation Techniques to Improve Neurorehabilitation. Barbigerone against Lipopolysaccharide-Induced Memory Deficit in Rodents via Alteration of Inflammatory and Oxidative Stress Pathway: In vivo and Molecular Dynamics Simulations Study. Sweroside Modulates Oxidative Stress and Neuroplasticity-Related Gene Expression in Scopolamine-Treated Zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1