Lithium Chloride Rescues Dopaminergic Neurons in a Parkinson's Disease Rat Model Challenged with Rotenone.

Eman Allam, Sary Khalil Abdel Ghafar, Manal Hussein, Ahmed Al-Emam, Khaled Radad
{"title":"Lithium Chloride Rescues Dopaminergic Neurons in a Parkinson's Disease Rat Model Challenged with Rotenone.","authors":"Eman Allam, Sary Khalil Abdel Ghafar, Manal Hussein, Ahmed Al-Emam, Khaled Radad","doi":"10.2174/0118715273365449250224090655","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Parkinson's disease, the second most common neurodegenerative disease, is still lacking an effective treatment that can stop dopaminergic cell loss in substantia nigra and alter disease progression.</p><p><strong>Objective: </strong>The present study aimed to investigate the neuroprotective efficacy of lithium chloride in a rotenone-induced rat model of Parkinson's disease.</p><p><strong>Methods: </strong>Forty male Sprague Dawley rats were assigned into 4 groups: control, rotenone-, rotenone and lithium chloride- and lithium chloride-treated groups. Rotenone (2 mg/kg b.w.) and lithium chloride (60 mg/kg b.w.) were, respectively, administered subcutaneously and orally five times a week for 5 weeks. At the end of each treatment, the neuroprotective efficacy of lithium chloride against rotenone-induced derangements was evaluated by some behavioral tests, biochemical analysis, gel electrophoresis, histopathology, and immunohistochemistry.</p><p><strong>Results: </strong>Rotenone significantly resulted in neurobehavioral deficits, gastrointestinal dysfunction, decreased activities of catalase and superoxide dismutase, depleted glutathione, and increased levels of malondialdehyde. It also caused DNA fragmentation and loss of dopaminergic neurons in substantia nigra and decreased striatal tyrosine hydroxylase staining intensity. Concomitant treatment of rats with rotenone and lithium chloride significantly improved behavioral impairment and markedly alleviated gastrointestinal dysfunction. It also increased catalase activity and decreased malondialdehyde levels, indicating antioxidant effects. Moreover, it decreased DNA fragmentation, rescued dopaminergic neurons, and increased tyrosine hydroxylase immunoreactivity in the striatum compared to the rotenone-treated group.</p><p><strong>Conclusion: </strong>Lithium chloride rescued dopaminergic neurons in a rotenone model of PD, possibly through the improvement of behavioral deficits, decreasing oxidative stress, and reducing DNA damage.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715273365449250224090655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Parkinson's disease, the second most common neurodegenerative disease, is still lacking an effective treatment that can stop dopaminergic cell loss in substantia nigra and alter disease progression.

Objective: The present study aimed to investigate the neuroprotective efficacy of lithium chloride in a rotenone-induced rat model of Parkinson's disease.

Methods: Forty male Sprague Dawley rats were assigned into 4 groups: control, rotenone-, rotenone and lithium chloride- and lithium chloride-treated groups. Rotenone (2 mg/kg b.w.) and lithium chloride (60 mg/kg b.w.) were, respectively, administered subcutaneously and orally five times a week for 5 weeks. At the end of each treatment, the neuroprotective efficacy of lithium chloride against rotenone-induced derangements was evaluated by some behavioral tests, biochemical analysis, gel electrophoresis, histopathology, and immunohistochemistry.

Results: Rotenone significantly resulted in neurobehavioral deficits, gastrointestinal dysfunction, decreased activities of catalase and superoxide dismutase, depleted glutathione, and increased levels of malondialdehyde. It also caused DNA fragmentation and loss of dopaminergic neurons in substantia nigra and decreased striatal tyrosine hydroxylase staining intensity. Concomitant treatment of rats with rotenone and lithium chloride significantly improved behavioral impairment and markedly alleviated gastrointestinal dysfunction. It also increased catalase activity and decreased malondialdehyde levels, indicating antioxidant effects. Moreover, it decreased DNA fragmentation, rescued dopaminergic neurons, and increased tyrosine hydroxylase immunoreactivity in the striatum compared to the rotenone-treated group.

Conclusion: Lithium chloride rescued dopaminergic neurons in a rotenone model of PD, possibly through the improvement of behavioral deficits, decreasing oxidative stress, and reducing DNA damage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lithium Chloride Rescues Dopaminergic Neurons in a Parkinson's Disease Rat Model Challenged with Rotenone. Oxidative Stress and the Role of Immune Cells in Alzheimer's Disease: Therapeutic Implications and Future Perspectives. Identification of Known Flavonoids of Ficus carica L. as Aldose Reductase Inhibitors in Sciatic Nerve of Diabetic Neuropathy-induced Rats through Bioinformatics and Proteomics Analysis. Dopamine Depletion in Parkinson's Disease and Therapeutic Options. Chlorogenic Acid as a Neuroprotective Agent: Enhancing Plasticity and Promoting Brain Health and Functional Reserve.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1