Danqing Yu , Qingping Zhong , Yanlin Wang , Chang Yin , Minghua Bai , Ji Zhu , Jinggang Chen , Huaming Li , Weifeng Hong
{"title":"Lactylation: The metabolic accomplice shaping cancer's response to radiotherapy and immunotherapy","authors":"Danqing Yu , Qingping Zhong , Yanlin Wang , Chang Yin , Minghua Bai , Ji Zhu , Jinggang Chen , Huaming Li , Weifeng Hong","doi":"10.1016/j.arr.2025.102670","DOIUrl":null,"url":null,"abstract":"<div><div>Protein lactylation, an emerging post-translational modification, is providing new insights into tumor biology and challenging our current understanding of cancer mechanisms. Our review illuminates the intricate roles of lactylation in carcinogenesis, tumor progression, and therapeutic responses, positioning it as a critical linchpin connecting metabolic reprogramming, epigenetic modulation, and treatment outcomes. We provide an in-depth analysis of lactylation's molecular mechanisms and its far-reaching impact on cell cycle regulation, immune evasion strategies, and therapeutic resistance within the complex tumor microenvironment. Notably, this review dissects the paradoxical nature of lactylation in cancer immunotherapy and radiotherapy. While heightened lactylation can foster immune suppression and radioresistance, strategically targeting lactylation cascades opens innovative avenues for amplifying the efficacy of current treatment paradigms. We critically evaluate lactylation's potential as a robust diagnostic and prognostic biomarker and explore frontier therapeutic approaches targeting lactylation. The synergistic integration of multi-omics data and artificial intelligence in lactylation research is catalyzing significant strides towards personalized cancer management. This review not only consolidates current knowledge but also charts a course for future investigations. Key research imperatives include deciphering tumor-specific lactylation signatures, optimizing synergistic strategies combining lactylation modulation with immune checkpoint inhibitors and radiotherapy, and comprehensively assessing the long-term physiological implications of lactylation intervention. As our understanding of lactylation's pivotal role in tumor biology continues to evolve, this burgeoning field promises to usher in transformative advancements in cancer diagnosis, treatment modalitie.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"104 ","pages":"Article 102670"},"PeriodicalIF":12.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163725000169","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein lactylation, an emerging post-translational modification, is providing new insights into tumor biology and challenging our current understanding of cancer mechanisms. Our review illuminates the intricate roles of lactylation in carcinogenesis, tumor progression, and therapeutic responses, positioning it as a critical linchpin connecting metabolic reprogramming, epigenetic modulation, and treatment outcomes. We provide an in-depth analysis of lactylation's molecular mechanisms and its far-reaching impact on cell cycle regulation, immune evasion strategies, and therapeutic resistance within the complex tumor microenvironment. Notably, this review dissects the paradoxical nature of lactylation in cancer immunotherapy and radiotherapy. While heightened lactylation can foster immune suppression and radioresistance, strategically targeting lactylation cascades opens innovative avenues for amplifying the efficacy of current treatment paradigms. We critically evaluate lactylation's potential as a robust diagnostic and prognostic biomarker and explore frontier therapeutic approaches targeting lactylation. The synergistic integration of multi-omics data and artificial intelligence in lactylation research is catalyzing significant strides towards personalized cancer management. This review not only consolidates current knowledge but also charts a course for future investigations. Key research imperatives include deciphering tumor-specific lactylation signatures, optimizing synergistic strategies combining lactylation modulation with immune checkpoint inhibitors and radiotherapy, and comprehensively assessing the long-term physiological implications of lactylation intervention. As our understanding of lactylation's pivotal role in tumor biology continues to evolve, this burgeoning field promises to usher in transformative advancements in cancer diagnosis, treatment modalitie.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.