Energy Dynamics Powered by Traction and Stress Control Formation and Motion of +1/2 Topological Defects in Epithelial Cell Monolayers.

ArXiv Pub Date : 2025-01-08
Pradip K Bera, Molly McCord, Jun Zhang, Jacob Notbohm
{"title":"Energy Dynamics Powered by Traction and Stress Control Formation and Motion of +1/2 Topological Defects in Epithelial Cell Monolayers.","authors":"Pradip K Bera, Molly McCord, Jun Zhang, Jacob Notbohm","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed both tail-to-head and head-to-tail defect motion occurring at the same time in the same cell monolayer. We quantified the cell velocities, the tractions at the cell-substrate interface, and stresses within the cell layer near +1/2 defects. Results revealed that both traction and stress are sources of activity within the epithelial cell monolayer, with their competition defining whether the cells inject or dissipate energy and determining the direction of motion of +1/2 defects. Interestingly, patterns of motion, traction, stress, and energy injection near +1/2 defects existed before defect formation, suggesting that defects form as a result of spatially coordinated patterns in cell forces and motion. These findings reverse the current picture, from one in which defects define the cell forces and motion to one in which coordinated patterns of cell forces and motion cause defects to form and move.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759851/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed both tail-to-head and head-to-tail defect motion occurring at the same time in the same cell monolayer. We quantified the cell velocities, the tractions at the cell-substrate interface, and stresses within the cell layer near +1/2 defects. Results revealed that both traction and stress are sources of activity within the epithelial cell monolayer, with their competition defining whether the cells inject or dissipate energy and determining the direction of motion of +1/2 defects. Interestingly, patterns of motion, traction, stress, and energy injection near +1/2 defects existed before defect formation, suggesting that defects form as a result of spatially coordinated patterns in cell forces and motion. These findings reverse the current picture, from one in which defects define the cell forces and motion to one in which coordinated patterns of cell forces and motion cause defects to form and move.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由牵引和应力驱动的能量动力学控制上皮细胞单层中 +1/2拓扑缺陷的形成和运动
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From FAIR to CURE: Guidelines for Computational Models of Biological Systems. Bayesian Parameter Inference and Uncertainty Quantification for a Computational Pulmonary Hemodynamics Model Using Gaussian Processes. Learning to Discover Regulatory Elements for Gene Expression Prediction. Regularization by Neural Style Transfer for MRI Field-Transfer Reconstruction with Limited Data. Instability of a fluctuating biomimetic membrane driven by an applied uniform DC electric field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1