Xin Yuan, Jiangtao Hu, Leo F M Marcelis, Ep Heuvelink, Jie Peng, Xiao Yang, Qichang Yang
{"title":"Advanced Technologies in Plant Factories: Exploring Current and Future Economic and Environmental Benefits in Urban Horticulture","authors":"Xin Yuan, Jiangtao Hu, Leo F M Marcelis, Ep Heuvelink, Jie Peng, Xiao Yang, Qichang Yang","doi":"10.1093/hr/uhaf024","DOIUrl":null,"url":null,"abstract":"Plant factories (PFs), also known as vertical farms, are advanced agricultural production systems that operate independently of geographical and environmental conditions. They utilize artificial light and controlled environments to produce horticultural plants year-round. This approach offers a promising solution for the stable and efficient supply of high-quality horticultural produce in urban areas, enhancing resilient urban food systems. This review explores the economic and environmental impacts and potential of PFs. Breakthroughs in PF research and development are highlighted, including increased product yields and quality, reduced energy input and CO2 emissions through optimized growing conditions and automation systems, transitioning to clean energy, improved resource use efficiency, and reduced food transport distances. Moreover, innovations and applications of PFs have been proposed to address challenges from both economic and environmental perspectives. The proposed development of PF technologies for economic and environmental benefits represents a comprehensive and promising approach to urban horticulture, significantly enhancing the impact and benefits of fundamental research and industrial applications.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"117 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf024","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Plant factories (PFs), also known as vertical farms, are advanced agricultural production systems that operate independently of geographical and environmental conditions. They utilize artificial light and controlled environments to produce horticultural plants year-round. This approach offers a promising solution for the stable and efficient supply of high-quality horticultural produce in urban areas, enhancing resilient urban food systems. This review explores the economic and environmental impacts and potential of PFs. Breakthroughs in PF research and development are highlighted, including increased product yields and quality, reduced energy input and CO2 emissions through optimized growing conditions and automation systems, transitioning to clean energy, improved resource use efficiency, and reduced food transport distances. Moreover, innovations and applications of PFs have been proposed to address challenges from both economic and environmental perspectives. The proposed development of PF technologies for economic and environmental benefits represents a comprehensive and promising approach to urban horticulture, significantly enhancing the impact and benefits of fundamental research and industrial applications.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.