Transcriptome Reveals the Promoting Effect of Beta-Sitosterol on the Differentiation of Bovine Preadipocytes

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of Agricultural and Food Chemistry Pub Date : 2025-01-28 DOI:10.1021/acs.jafc.4c10452
Lei Jiang, Xiaolei Sun, Yuan Wan, Qihua Qin, Min Xu, Jianqiang Ma, Linsen Zan, Hongbao Wang
{"title":"Transcriptome Reveals the Promoting Effect of Beta-Sitosterol on the Differentiation of Bovine Preadipocytes","authors":"Lei Jiang, Xiaolei Sun, Yuan Wan, Qihua Qin, Min Xu, Jianqiang Ma, Linsen Zan, Hongbao Wang","doi":"10.1021/acs.jafc.4c10452","DOIUrl":null,"url":null,"abstract":"Natural small molecule compounds play crucial roles in regulating fat deposition. Beta-sitosterol exhibits multiple biological activities such as cholesterol reduction and anticancer effects. However, its regulatory mechanism in the differentiation of bovine preadipocytes remains unclear. We identified potential associations of Beta-sitosterol with biological processes such as cholesterol regulation and lipid metabolism through the prediction of its targets. We utilized techniques such as Oil Red O staining, Western blotting, RNA-seq, and others to elucidate the promoting effect of Beta-sitosterol on the differentiation of bovine preadipocytes. Furthermore, reducing the expression of the most downregulated gene among differential expressed genes (DEGs), <i>MGP</i>, promotes the differentiation of bovine preadipocytes. After interfering with <i>MGP</i>, RNA-seq analysis on the sixth day of differentiation revealed that DEGs were most significantly enriched in the PPAR signaling pathway. In this pathway, the expression levels of genes related to adipocyte differentiation, including <i>CD36</i>, <i>RXR</i>α, <i>RXR</i>γ, <i>FABP4</i>, <i>PLIN1</i>, <i>ADIPO</i>, and <i>CAP</i>, were significantly upregulated (<i>P</i> &lt; 0.01). Western blot and ELISA analysis on genes related to the PPAR signaling pathway showed that interfering with <i>MGP</i> increased the expression of proteins such as RXRα, indicating the possible activation of the PPAR signaling pathway. In summary, Beta-sitosterol may promote the differentiation of bovine preadipocytes by reducing the expression of <i>MGP</i>, thereby activating the PPAR signaling pathway.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"59 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c10452","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Natural small molecule compounds play crucial roles in regulating fat deposition. Beta-sitosterol exhibits multiple biological activities such as cholesterol reduction and anticancer effects. However, its regulatory mechanism in the differentiation of bovine preadipocytes remains unclear. We identified potential associations of Beta-sitosterol with biological processes such as cholesterol regulation and lipid metabolism through the prediction of its targets. We utilized techniques such as Oil Red O staining, Western blotting, RNA-seq, and others to elucidate the promoting effect of Beta-sitosterol on the differentiation of bovine preadipocytes. Furthermore, reducing the expression of the most downregulated gene among differential expressed genes (DEGs), MGP, promotes the differentiation of bovine preadipocytes. After interfering with MGP, RNA-seq analysis on the sixth day of differentiation revealed that DEGs were most significantly enriched in the PPAR signaling pathway. In this pathway, the expression levels of genes related to adipocyte differentiation, including CD36, RXRα, RXRγ, FABP4, PLIN1, ADIPO, and CAP, were significantly upregulated (P < 0.01). Western blot and ELISA analysis on genes related to the PPAR signaling pathway showed that interfering with MGP increased the expression of proteins such as RXRα, indicating the possible activation of the PPAR signaling pathway. In summary, Beta-sitosterol may promote the differentiation of bovine preadipocytes by reducing the expression of MGP, thereby activating the PPAR signaling pathway.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
期刊最新文献
1,3,4-Oxadiazole Sulfonamide Derivatives Containing Pyrazole Structures: Design, Synthesis, Biological Activity Studies, and Mechanism Study Determination of Reactive Dyes in Coloring Foodstuff, Fruit Juice Concentrates, and Meat Products by Reductive Azo-Bond Cleavage and LC-ESI-MS/MS Analysis In-Depth Analysis of Soil Microbial Community Succession Model Construction under Microplastics Stress Phosphate Limitation Enhances Heterologous Enzyme Production in Bacillus subtilis: Mechanistic Insights and Universal Applicability Vitamin B6 Alleviates Aflatoxin B1-Induced Impairment of Testis Development by Activating the PI3K/Akt Signaling Pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1