Why and How to Investigate Biological Materials Processing: A Cross-Disciplinary Approach for Inspiring Sustainable Materials Fabrication

IF 14 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of materials research Pub Date : 2025-01-27 DOI:10.1021/accountsmr.4c00334
Matthew J. Harrington
{"title":"Why and How to Investigate Biological Materials Processing: A Cross-Disciplinary Approach for Inspiring Sustainable Materials Fabrication","authors":"Matthew J. Harrington","doi":"10.1021/accountsmr.4c00334","DOIUrl":null,"url":null,"abstract":"Enhancing the performance and sustainability of materials is a major challenge facing humanity. With nearly 400 million tons of plastics manufactured per year and plastic waste accumulation of 12 billion tons expected by 2050, the production and buildup of anthropogenic petroleum-based waste is a major threat to our global ecosystem. This impending environmental catastrophe demands alternative sustainable and circular routes for material production. Additionally, there is a need for new polymeric materials that possess properties not currently found in synthetic materials for various applications in biomedical engineering, soft robotics, flexible electronics, and more. Nature offers inspiration for solving both of these environmentally, economically, and socially impactful global issues. Indeed, living organisms, such as spiders and mussels, rapidly fabricate polymeric biological materials from biomolecular building blocks (e.g., proteins) under green, environmentally benign processing conditions. These materials exhibit properties that surpass many synthetic plastics (e.g., high toughness, self-healing, “smart” adaptability, underwater adhesion), providing a blueprint for how humans can develop sustainable fabrication practices for producing next-generation materials. There is now a solid understanding of the structure–function relationships defining the performance of many biological materials, with control of structural hierarchy from nanoscale to centimeter scale emerging as a common design feature. Yet, it has been extremely challenging to replicate this hierarchical structure and, thus, the relevant properties in synthetic materials. This is largely due to a poor understanding of how these materials are fabricated by living organisms. Indeed, elucidation of the physicochemical principles underlying the fabrication of these and similar materials is significantly hampered due to experimental challenges in following these dynamic processes at the relevant spatiotemporal scales. Here, I outline a cross-disciplinary experimental approach spanning organismal biology, molecular biology, biochemistry, physical chemistry, and materials science for extracting design principles from biofabrication processes. As a model system, I focus on the fabrication of the mussel byssus–a biopolymeric fibrous holdfast with outstanding properties (underwater adhesion, high toughness, self-healing capacity) that is an established archetype for sustainable bioinspired fibers, glues, composites, and coatings. Careful analysis combining traditional histology and biochemical approaches with advanced spectroscopic imaging (e.g, confocal Raman spectroscopy, FTIR spectroscopy, and micro X-ray fluorescence), tomographic approaches (e.g., micro-CT), and advanced electron microscopy (e.g., focused ion beam scanning electron microscopy (FIB-SEM)) have yielded deep insights into the byssus assembly process, highlighting the key role of fluid protein condensates (liquid crystals and coacervates), microfluidic-like mixing, and protein–metal coordination bonds, as well as various physicochemical triggers (e.g., pH, redox, mechanical shear) that promote the self-organization and cross-linking of stimuli-responsive protein building blocks. Extracted concepts are already being applied for enhancing the sustainable fabrication of bioinspired materials for technical and biomedical applications.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"59 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the performance and sustainability of materials is a major challenge facing humanity. With nearly 400 million tons of plastics manufactured per year and plastic waste accumulation of 12 billion tons expected by 2050, the production and buildup of anthropogenic petroleum-based waste is a major threat to our global ecosystem. This impending environmental catastrophe demands alternative sustainable and circular routes for material production. Additionally, there is a need for new polymeric materials that possess properties not currently found in synthetic materials for various applications in biomedical engineering, soft robotics, flexible electronics, and more. Nature offers inspiration for solving both of these environmentally, economically, and socially impactful global issues. Indeed, living organisms, such as spiders and mussels, rapidly fabricate polymeric biological materials from biomolecular building blocks (e.g., proteins) under green, environmentally benign processing conditions. These materials exhibit properties that surpass many synthetic plastics (e.g., high toughness, self-healing, “smart” adaptability, underwater adhesion), providing a blueprint for how humans can develop sustainable fabrication practices for producing next-generation materials. There is now a solid understanding of the structure–function relationships defining the performance of many biological materials, with control of structural hierarchy from nanoscale to centimeter scale emerging as a common design feature. Yet, it has been extremely challenging to replicate this hierarchical structure and, thus, the relevant properties in synthetic materials. This is largely due to a poor understanding of how these materials are fabricated by living organisms. Indeed, elucidation of the physicochemical principles underlying the fabrication of these and similar materials is significantly hampered due to experimental challenges in following these dynamic processes at the relevant spatiotemporal scales. Here, I outline a cross-disciplinary experimental approach spanning organismal biology, molecular biology, biochemistry, physical chemistry, and materials science for extracting design principles from biofabrication processes. As a model system, I focus on the fabrication of the mussel byssus–a biopolymeric fibrous holdfast with outstanding properties (underwater adhesion, high toughness, self-healing capacity) that is an established archetype for sustainable bioinspired fibers, glues, composites, and coatings. Careful analysis combining traditional histology and biochemical approaches with advanced spectroscopic imaging (e.g, confocal Raman spectroscopy, FTIR spectroscopy, and micro X-ray fluorescence), tomographic approaches (e.g., micro-CT), and advanced electron microscopy (e.g., focused ion beam scanning electron microscopy (FIB-SEM)) have yielded deep insights into the byssus assembly process, highlighting the key role of fluid protein condensates (liquid crystals and coacervates), microfluidic-like mixing, and protein–metal coordination bonds, as well as various physicochemical triggers (e.g., pH, redox, mechanical shear) that promote the self-organization and cross-linking of stimuli-responsive protein building blocks. Extracted concepts are already being applied for enhancing the sustainable fabrication of bioinspired materials for technical and biomedical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.70
自引率
0.00%
发文量
0
期刊最新文献
Thermoresponsive Hydrogels for the Construction of Smart Windows, Sensors, and Actuators Perspectives of Flexible Thermoelectric Fibers by Thermal Drawing Techniques Constructing High-Performance Heterogeneous Catalysts through Interface Engineering on Metal–Organic Framework Platforms Block Copolymer Based Porous Carbon Fiber─Synthesis, Processing, and Applications Why and How to Investigate Biological Materials Processing: A Cross-Disciplinary Approach for Inspiring Sustainable Materials Fabrication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1