Nanoclay-Mediated Crystal-Phase Engineering in Biofunctions to Balance Antibacteriality and Cytotoxicity

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-01-28 DOI:10.1021/acs.nanolett.4c05691
Menghan Yu, Yunyang Liu, Tianqi Liao, Huaming Yang
{"title":"Nanoclay-Mediated Crystal-Phase Engineering in Biofunctions to Balance Antibacteriality and Cytotoxicity","authors":"Menghan Yu, Yunyang Liu, Tianqi Liao, Huaming Yang","doi":"10.1021/acs.nanolett.4c05691","DOIUrl":null,"url":null,"abstract":"The crystalline phase of metal oxides is a key determinant of the properties and functions of the nanomaterials. Traditional approaches have focused on replicating bulk-phase structures, with limited exploration of phase diversity due to challenges in controlling the crystal morphology. Here, we introduce a nanoclay-mediated strategy for crystal-phase engineering, using talc to modulate the morphology and phase of manganese oxide (MnOx) nanoparticles. This approach enhances the oxidase activity of the MnOx composite (M/T), optimizing the antimicrobial efficacy while minimizing cytotoxicity. M/T-190 demonstrated 99% bactericidal activity against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, coupled with 84% cytocompatibility. Theory calculations suggest that talc modulates the charge distribution and d-band center tuning at the Mn<sub>3</sub>O<sub>4</sub>/MnOOH interface, enhancing oxygen activation. When integrated into gauze, M/T exhibits strong antimicrobial activity, low toxicity, and promotes wound healing in both in vitro and in vivo studies. These findings highlight the potential of natural minerals for crystal-phase engineering in biomedical applications.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"35 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05691","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The crystalline phase of metal oxides is a key determinant of the properties and functions of the nanomaterials. Traditional approaches have focused on replicating bulk-phase structures, with limited exploration of phase diversity due to challenges in controlling the crystal morphology. Here, we introduce a nanoclay-mediated strategy for crystal-phase engineering, using talc to modulate the morphology and phase of manganese oxide (MnOx) nanoparticles. This approach enhances the oxidase activity of the MnOx composite (M/T), optimizing the antimicrobial efficacy while minimizing cytotoxicity. M/T-190 demonstrated 99% bactericidal activity against Escherichia coli and Staphylococcus aureus, coupled with 84% cytocompatibility. Theory calculations suggest that talc modulates the charge distribution and d-band center tuning at the Mn3O4/MnOOH interface, enhancing oxygen activation. When integrated into gauze, M/T exhibits strong antimicrobial activity, low toxicity, and promotes wound healing in both in vitro and in vivo studies. These findings highlight the potential of natural minerals for crystal-phase engineering in biomedical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Nanosensor for Fe(II) and Fe(III) Allowing Spatiotemporal Sensing in Planta Halting Pancreatic Ductal Adenocarcinoma Progression and Metastasis by Neuron-Inhibitory Liposomes Enhancing Li Deposition Behavior through Valence Gradient-Assisted Iron Layer Nanoclay-Mediated Crystal-Phase Engineering in Biofunctions to Balance Antibacteriality and Cytotoxicity Solar-Driven High-Rate Ammonia Production from Wastewater Coupled with Plastic Waste Reforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1