Enhanced nitrogen removal from low C/N municipal wastewater in a step-feed integrated fixed-film activated sludge system: Synergizing anammox and partial denitrification with sludge fermentation liquid supplementation
Yiyuan Xing, Wenjie Li, Xiaojian Liao, Lu Wang, Bo Wang, Yongzhen Peng
{"title":"Enhanced nitrogen removal from low C/N municipal wastewater in a step-feed integrated fixed-film activated sludge system: Synergizing anammox and partial denitrification with sludge fermentation liquid supplementation","authors":"Yiyuan Xing, Wenjie Li, Xiaojian Liao, Lu Wang, Bo Wang, Yongzhen Peng","doi":"10.1016/j.watres.2025.123211","DOIUrl":null,"url":null,"abstract":"<div><div>The scarcity of rapidly biodegradable organics, which serve as essential electron donors for the partial denitrification (PD) process, significantly hinders the combined application of PD coupled with anammox (PDA) in municipal wastewater treatment plants. This study innovatively applied, for the first time, a step-feed strategy combined with the use of sludge fermentation liquid (SFL) as an external carbon source in an integrated fixed-film activated sludge (IFAS) system, successfully driving full nitrification and PDA to achieve advanced nitrogen removal from low C/N real municipal wastewater. Moreover, the associated nitrogen removal mechanism of this system was systematically analyzed. By employing second-step SFL feed as a supplementary carbon source, the nitrogen removal efficiency reached 92.26 ± 2.77 % and the effluent total inorganic nitrogen was 6.43 ± 2.23 mg/L, with anammox contributing approximately 70 % to total inorganic nitrogen removal. 16S rRNA gene sequencing and fluorescence in situ hybridization analysis unveiled the extensive cooperation and synergistic interactions among anammox bacteria, denitrifying bacteria, and nitrifying bacteria, with <em>Candidatus</em> Brocadia being highly enriched in biofilms with a relative abundance of 2.21 %. Metagenomic sequencing confirmed that the relative abundance of the <em>narGHI</em> gene was greater than that of the <em>nirS</em> gene, providing stable nitrite accumulation conditions for the anammox process. Overall, this study proposes an innovative synergistic treatment scheme that utilizes a step-feed full nitrification-PDA process driven by SFL to achieve advanced nitrogen removal in municipal wastewater treatment plants. This approach is characterized by low energy consumption, low operational costs and a high nitrogen removal efficiency.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"275 ","pages":"Article 123211"},"PeriodicalIF":11.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425001253","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The scarcity of rapidly biodegradable organics, which serve as essential electron donors for the partial denitrification (PD) process, significantly hinders the combined application of PD coupled with anammox (PDA) in municipal wastewater treatment plants. This study innovatively applied, for the first time, a step-feed strategy combined with the use of sludge fermentation liquid (SFL) as an external carbon source in an integrated fixed-film activated sludge (IFAS) system, successfully driving full nitrification and PDA to achieve advanced nitrogen removal from low C/N real municipal wastewater. Moreover, the associated nitrogen removal mechanism of this system was systematically analyzed. By employing second-step SFL feed as a supplementary carbon source, the nitrogen removal efficiency reached 92.26 ± 2.77 % and the effluent total inorganic nitrogen was 6.43 ± 2.23 mg/L, with anammox contributing approximately 70 % to total inorganic nitrogen removal. 16S rRNA gene sequencing and fluorescence in situ hybridization analysis unveiled the extensive cooperation and synergistic interactions among anammox bacteria, denitrifying bacteria, and nitrifying bacteria, with Candidatus Brocadia being highly enriched in biofilms with a relative abundance of 2.21 %. Metagenomic sequencing confirmed that the relative abundance of the narGHI gene was greater than that of the nirS gene, providing stable nitrite accumulation conditions for the anammox process. Overall, this study proposes an innovative synergistic treatment scheme that utilizes a step-feed full nitrification-PDA process driven by SFL to achieve advanced nitrogen removal in municipal wastewater treatment plants. This approach is characterized by low energy consumption, low operational costs and a high nitrogen removal efficiency.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.