Lin Wang, Li Chen, Xionghu Xu, Zhangchen Hou, Yafang Li, Liyan Shang, Jinzhong Zhang, Liangqing Zhu, Yawei Li, Fei Cao, Genshui Wang, Junhao Chu, Zhigao Hu
{"title":"Nanoscale insights on phase transition dynamics of doped VO2 for memristor devices","authors":"Lin Wang, Li Chen, Xionghu Xu, Zhangchen Hou, Yafang Li, Liyan Shang, Jinzhong Zhang, Liangqing Zhu, Yawei Li, Fei Cao, Genshui Wang, Junhao Chu, Zhigao Hu","doi":"10.1063/5.0235030","DOIUrl":null,"url":null,"abstract":"This study utilized co-sputtering to fabricate Mo-doped VO2 films and identified an optimal concentration exhibiting a lower phase transition temperature (Th = 55.8 °C) and a broader hysteresis window (Δ T = 13.6 °C). At the atomistic scale, it is demonstrated that Mo dopant-induced localized strain accelerates the phase transition, which leads to the relaxation of the tetragonal structure. Furthermore, the effects of Mo doping on the phase transition process and electrical properties are characterized at the nanoscale using conductive atomic force microscopy and Kelvin probe force microscopy, and the potential application in selectors can be evaluated. The results indicated that Mo doping destabilizes the M1 phase by introducing a high density of electrons, thereby significantly reducing the electron–electron interactions as per the Mott model. Moreover, the device exhibited stable threshold and memristive properties at room temperature, quickly switching from high to low-resistance states at a threshold voltage of 2.37 V and maintaining stability over more than 1000 cycles with a selectivity >102. The present work not only highlights the role of Mo doping in enhancing the functional properties of VO2 but also demonstrates its feasibility in high-performance selectors devices.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"36 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0235030","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study utilized co-sputtering to fabricate Mo-doped VO2 films and identified an optimal concentration exhibiting a lower phase transition temperature (Th = 55.8 °C) and a broader hysteresis window (Δ T = 13.6 °C). At the atomistic scale, it is demonstrated that Mo dopant-induced localized strain accelerates the phase transition, which leads to the relaxation of the tetragonal structure. Furthermore, the effects of Mo doping on the phase transition process and electrical properties are characterized at the nanoscale using conductive atomic force microscopy and Kelvin probe force microscopy, and the potential application in selectors can be evaluated. The results indicated that Mo doping destabilizes the M1 phase by introducing a high density of electrons, thereby significantly reducing the electron–electron interactions as per the Mott model. Moreover, the device exhibited stable threshold and memristive properties at room temperature, quickly switching from high to low-resistance states at a threshold voltage of 2.37 V and maintaining stability over more than 1000 cycles with a selectivity >102. The present work not only highlights the role of Mo doping in enhancing the functional properties of VO2 but also demonstrates its feasibility in high-performance selectors devices.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.