Self-Regulatory Lean-Electrolyte Flow for Building 600 Wh Kg−1-Level Rechargeable Lithium Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-01-28 DOI:10.1002/adma.202419377
Zhepu Shi, Peng Hao, Yangcai He, Yibin Zhang, Shoulei Hu, Yanbin Shen, Qingwen Gu, Ling Zhang, George Zheng Chen, Di Hu, Zhaoping Liu, Bao Qiu
{"title":"Self-Regulatory Lean-Electrolyte Flow for Building 600 Wh Kg−1-Level Rechargeable Lithium Batteries","authors":"Zhepu Shi, Peng Hao, Yangcai He, Yibin Zhang, Shoulei Hu, Yanbin Shen, Qingwen Gu, Ling Zhang, George Zheng Chen, Di Hu, Zhaoping Liu, Bao Qiu","doi":"10.1002/adma.202419377","DOIUrl":null,"url":null,"abstract":"Reducing excess electrolytes offers a promising approach to improve the specific energy of electrochemical energy storage devices. However, using lean electrolytes presents a significant challenge for porous electrode materials due to heterogeneous wetting. The spontaneous wetting of nano- or meso-pores within particles, though seldom discussed, adversely affects wetting under lean electrolyte conditions. Herein, this undesired wetting behavior is mitigated by enlarging the pore-throat ratio, enabling Li-rich layered oxide to function effectively at very low electrolyte/capacity (E/C) ratio of 1.4 g Ah<sup>−1</sup>. The resulting pouch cell achieves 606 Wh kg<sup>−1</sup> and retains 80% capacity (75% energy) after 70 cycles. Through imaging techniques and molecular dynamics simulations, it is demonstrated that the pore-throat ratio effectively determines the permeability of electrolyte within particles. By elucidating pore-relating mechanisms, this work unveils promising potential of manipulating pore structures in porous electrode materials, an approach that can be applied to improve the specific energy of other devices including semi-solid-state lithium batteries.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"15 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419377","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing excess electrolytes offers a promising approach to improve the specific energy of electrochemical energy storage devices. However, using lean electrolytes presents a significant challenge for porous electrode materials due to heterogeneous wetting. The spontaneous wetting of nano- or meso-pores within particles, though seldom discussed, adversely affects wetting under lean electrolyte conditions. Herein, this undesired wetting behavior is mitigated by enlarging the pore-throat ratio, enabling Li-rich layered oxide to function effectively at very low electrolyte/capacity (E/C) ratio of 1.4 g Ah−1. The resulting pouch cell achieves 606 Wh kg−1 and retains 80% capacity (75% energy) after 70 cycles. Through imaging techniques and molecular dynamics simulations, it is demonstrated that the pore-throat ratio effectively determines the permeability of electrolyte within particles. By elucidating pore-relating mechanisms, this work unveils promising potential of manipulating pore structures in porous electrode materials, an approach that can be applied to improve the specific energy of other devices including semi-solid-state lithium batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Organic Ink Multi-Material 3D Printing of Sustainable Soft Systems (Adv. Mater. 4/2025) Ultraflexible Vertical Corbino Organic Electrochemical Transistors for Epidermal Signal Monitoring (Adv. Mater. 4/2025) Motion-Adaptive Tessellated Skin Patches With Switchable Adhesion for Wearable Electronics (Adv. Mater. 4/2025) Oxychloride Polyanion Clustered Solid-State Electrolytes via Hydrate-Assisted Synthesis for All-Solid-State Batteries (Adv. Mater. 4/2025) Ultrafast Symmetry Control in Photoexcited Quantum Dots (Adv. Mater. 4/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1