PagSND1-B1 Regulates Wood Formation by Influencing Phosphorus Absorption and Distribution in Poplar.

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2025-01-28 DOI:10.1111/pce.15405
Peisheng Cheng, Liling Gong, Qiuxian Bai, Ning Dong, Yi An, Chen Jiang, Lichao Huang, Mengzhu Lu, Jin Zhang, Ningning Chen
{"title":"PagSND1-B1 Regulates Wood Formation by Influencing Phosphorus Absorption and Distribution in Poplar.","authors":"Peisheng Cheng, Liling Gong, Qiuxian Bai, Ning Dong, Yi An, Chen Jiang, Lichao Huang, Mengzhu Lu, Jin Zhang, Ningning Chen","doi":"10.1111/pce.15405","DOIUrl":null,"url":null,"abstract":"<p><p>In natural environments, the growth and development of trees are continuously affected by phosphorus (P) starvation stress. However, the mechanisms through which trees balance stem growth and P distribution remain unknown. This study found that in the woody model species poplar, the P loss in stems is more severe than that in roots and leaves under P starvation conditions, thereby inhibiting stem development and reducing the expression of numerous genes related to wood formation, including PagSND1-B1. Intriguingly, overexpression of PagSND1-B1 in poplar enhances resistance to P starvation and promotes xylem development. Further analysis demonstrated that PagSND1-B1 can directly and positively regulate the phosphorus transporter PagPHT1;5a. Analysis of P content changes in leaves, stems and roots of transgenic poplar before and after treatment indicated that overexpression of PagSND1-B1 disrupts the normal P redistribution procedure, leading to increased P accumulation in stems, which is beneficial for xylem development. Therefore, PagSND1-B1 participates in the phosphorus absorption and homoeostasis of poplar by modulating PagPHT1;5a. This study provides valuable insights into the regulatory function of PagSND1-B1 in wood formation and the process by which trees balance phosphorus distribution and xylem development.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15405","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In natural environments, the growth and development of trees are continuously affected by phosphorus (P) starvation stress. However, the mechanisms through which trees balance stem growth and P distribution remain unknown. This study found that in the woody model species poplar, the P loss in stems is more severe than that in roots and leaves under P starvation conditions, thereby inhibiting stem development and reducing the expression of numerous genes related to wood formation, including PagSND1-B1. Intriguingly, overexpression of PagSND1-B1 in poplar enhances resistance to P starvation and promotes xylem development. Further analysis demonstrated that PagSND1-B1 can directly and positively regulate the phosphorus transporter PagPHT1;5a. Analysis of P content changes in leaves, stems and roots of transgenic poplar before and after treatment indicated that overexpression of PagSND1-B1 disrupts the normal P redistribution procedure, leading to increased P accumulation in stems, which is beneficial for xylem development. Therefore, PagSND1-B1 participates in the phosphorus absorption and homoeostasis of poplar by modulating PagPHT1;5a. This study provides valuable insights into the regulatory function of PagSND1-B1 in wood formation and the process by which trees balance phosphorus distribution and xylem development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Salicylic Acid Cooperates With Lignin and Sucrose Signals to Alleviate Waxy Maize Leaf Senescence Under Heat Stress. LNC159c Negatively Regulates Anthocyanin Biosynthesis via miR159c in Malus spectabilis Under Low Nitrogen. About How Nitrate Controls Nodulation: Will Soybean Spill the Bean? The Crucial Roles of Phloem Companion Cells in Response to Phosphorus Deficiency. Correction to "Nyctinastic Movement in Legumes: Developmental Mechanisms, Factors and Biological Significance".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1