Soil Microbial Mechanisms to Improve Pear Seedling Growth by Applying Bacillus and Trichoderma-Amended Biofertilizers.

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2025-01-27 DOI:10.1111/pce.15395
Yanwei Ma, Kuerban Zuohereguli, Lisheng Zhang, Yalong Kang, Liwen Shi, Hao Xu, Yang Ruan, Tao Wen, Xinlan Mei, Caixia Dong, Yangchun Xu, Qirong Shen
{"title":"Soil Microbial Mechanisms to Improve Pear Seedling Growth by Applying Bacillus and Trichoderma-Amended Biofertilizers.","authors":"Yanwei Ma, Kuerban Zuohereguli, Lisheng Zhang, Yalong Kang, Liwen Shi, Hao Xu, Yang Ruan, Tao Wen, Xinlan Mei, Caixia Dong, Yangchun Xu, Qirong Shen","doi":"10.1111/pce.15395","DOIUrl":null,"url":null,"abstract":"<p><p>Bacillus velezensis SQR9 or Trichoderma harzianum NJAU4742-amended bioorganic fertilizers might significantly improve the soil microbial community and crop yields. However, the mechanisms these microorganisms act are far away from distinctness. We combined amplicon sequencing with culturable approaches to investigate the effects of these microorganisms on pear tree growth, rhizosphere nutrients and microbial mechanisms. The SQR9 and T4742 treatments increased the total biomass of pear trees by 68% and 84%, respectively, compared to the conventional organic fertilizer treatment (CK). SQR9 tends to increase soil organic matter and available phosphorus, while T4742 more effectively enhances nitrogen, potassium, iron and zinc levels. These effects were primarily linked to changes in the microbial community. T4742 treatment enriched twice as many differential microbes as SQR9. SQR9 significantly enriched Urebacillus, Streptomyces and Mycobacterium, while T4742 increased the abundance of Pseudomonas, Aspergillus and Penicillium. In vitro experiments revealed that secondary metabolites secreted by B. velezensis SQR9 and T. harzianum NJAU4742 stimulate the growth of key probiotics associated with their respective treatments, enhancing soil fertility and plant biomass. The study revealed the specific roles of these bioorganic fertilizers in agricultural applications, providing new insights for developing effective and targeted bioorganic fertilizer products and promoting sustainable agriculture.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15395","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bacillus velezensis SQR9 or Trichoderma harzianum NJAU4742-amended bioorganic fertilizers might significantly improve the soil microbial community and crop yields. However, the mechanisms these microorganisms act are far away from distinctness. We combined amplicon sequencing with culturable approaches to investigate the effects of these microorganisms on pear tree growth, rhizosphere nutrients and microbial mechanisms. The SQR9 and T4742 treatments increased the total biomass of pear trees by 68% and 84%, respectively, compared to the conventional organic fertilizer treatment (CK). SQR9 tends to increase soil organic matter and available phosphorus, while T4742 more effectively enhances nitrogen, potassium, iron and zinc levels. These effects were primarily linked to changes in the microbial community. T4742 treatment enriched twice as many differential microbes as SQR9. SQR9 significantly enriched Urebacillus, Streptomyces and Mycobacterium, while T4742 increased the abundance of Pseudomonas, Aspergillus and Penicillium. In vitro experiments revealed that secondary metabolites secreted by B. velezensis SQR9 and T. harzianum NJAU4742 stimulate the growth of key probiotics associated with their respective treatments, enhancing soil fertility and plant biomass. The study revealed the specific roles of these bioorganic fertilizers in agricultural applications, providing new insights for developing effective and targeted bioorganic fertilizer products and promoting sustainable agriculture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Correction to "Nyctinastic Movement in Legumes: Developmental Mechanisms, Factors and Biological Significance". A Multi-Omics Meta-Analysis of Rhizosphere Microbiome Reveals Growth-Promoting Marker Bacteria at Different Stages of Legume Development. Salicylic Acid, Hypersensitive Response and RBOHD-Mediated Hydrogen Peroxide Accumulation Play Key Roles in Black Rot Resistance of Crucifers. Combining the CowPEAsy Web Application With in Planta Agroinfiltration for Native Promoter Validation in Vigna unguiculata. Genetic Variation and Phenotypic Plasticity of Leaf Minimum Water Conductance in Temperate Tree Species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1