Solid-State Precipitation of Silver Nanoparticles Nucleated during Al Anodizing: Mechanism and Antibacterial Properties.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-01-28 DOI:10.1021/acsabm.4c01694
Teo Atz-Dick, Renato de Castro Valente, Thiago Vignoli Machado, Fabiana Horn, Luís F P Dick
{"title":"Solid-State Precipitation of Silver Nanoparticles Nucleated during Al Anodizing: Mechanism and Antibacterial Properties.","authors":"Teo Atz-Dick, Renato de Castro Valente, Thiago Vignoli Machado, Fabiana Horn, Luís F P Dick","doi":"10.1021/acsabm.4c01694","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an innovative approach to creating antibacterial aluminum surfaces by combining the antibacterial properties of silver nanoparticles (Ag NPs) with the nanoarchitecture of anodized aluminum oxide in one step. An Al-Ag alloy containing 10 wt % Ag was synthesized and anodized in 0.3 M oxalic acid. Ag NPs precipitated in the solid state during anodization, resulting in a porous nanocomposite structure. Comprehensive characterization using SEM, TEM, and EDS revealed a 43 μm thick oxide layer with uniformly distributed nanopores of approximately 100 nm in diameter. Ag NPs with diameters ranging from 2 to 14 nm precipitated dispersed on the surface, inside pores, and within the Al<sub>2</sub>O<sub>3</sub> matrix. Antibacterial properties were evaluated against <i>Escherichia coli</i>. The anodized Al-Ag surface demonstrated robust antibacterial activity after short incubation times (up to 1 × 10<sup>8</sup> CFU/ml after 3 h). The enhanced antibacterial properties are attributed to the optimal size and distribution of Ag NPs and the potential physical bactericidal effect of the nanoporous structure. This strategy for the precipitation of Ag NPs in the solid state could be used to fabricate high-touch surfaces in hospitals.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an innovative approach to creating antibacterial aluminum surfaces by combining the antibacterial properties of silver nanoparticles (Ag NPs) with the nanoarchitecture of anodized aluminum oxide in one step. An Al-Ag alloy containing 10 wt % Ag was synthesized and anodized in 0.3 M oxalic acid. Ag NPs precipitated in the solid state during anodization, resulting in a porous nanocomposite structure. Comprehensive characterization using SEM, TEM, and EDS revealed a 43 μm thick oxide layer with uniformly distributed nanopores of approximately 100 nm in diameter. Ag NPs with diameters ranging from 2 to 14 nm precipitated dispersed on the surface, inside pores, and within the Al2O3 matrix. Antibacterial properties were evaluated against Escherichia coli. The anodized Al-Ag surface demonstrated robust antibacterial activity after short incubation times (up to 1 × 108 CFU/ml after 3 h). The enhanced antibacterial properties are attributed to the optimal size and distribution of Ag NPs and the potential physical bactericidal effect of the nanoporous structure. This strategy for the precipitation of Ag NPs in the solid state could be used to fabricate high-touch surfaces in hospitals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Deciphering Binding Potential of Naphthalimide-Coumarin Conjugate with c-MYC G-Quadruplex for Developing Anticancer Agents: A Spectroscopic and Molecular Modeling Approach. Fabrication of Hypoxia-Mimicking Supramolecular Hydrogels for Cartilage Repair. Solid-State Precipitation of Silver Nanoparticles Nucleated during Al Anodizing: Mechanism and Antibacterial Properties. Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid. Osteopontin Facilitated Dental Pulp Cell Adhesion and Differentiation: A Laboratory Investigation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1