Ashley L Hollings, Gaewyn C Ellison, Meg Willans, Virginie Lam, Thomas Munyard, Aedena-Raquel Remy, Ryu Takechi, John C L Mamo, Sam Webb, Elizabeth J New, Simon A James, Chris Glover, Annaleise Klein, Jitraporn Vongsvivut, Daryl Howard, Mark J Hackett
{"title":"Subventricular Accumulation of Cu in the Aging Mouse Brain Does Not Associate with Anticipated Increases in Markers of Oxidative Stress.","authors":"Ashley L Hollings, Gaewyn C Ellison, Meg Willans, Virginie Lam, Thomas Munyard, Aedena-Raquel Remy, Ryu Takechi, John C L Mamo, Sam Webb, Elizabeth J New, Simon A James, Chris Glover, Annaleise Klein, Jitraporn Vongsvivut, Daryl Howard, Mark J Hackett","doi":"10.1021/acschemneuro.4c00320","DOIUrl":null,"url":null,"abstract":"<p><p>Natural aging is associated with mild memory loss and cognitive decline, and age is the greatest risk factor for neurodegenerative diseases, such as Alzheimer's disease. There is substantial evidence that oxidative stress is a major contributor to both natural aging and neurodegenerative disease, and coincidently, levels of redox active metals such as Fe and Cu are known to be elevated later in life. Recently, a pronounced age-related increase in Cu content has been reported to occur in mice and rats around a vital regulatory brain region, the subventricular zone of lateral ventricles. In our study herein, we have characterized lateral ventricle Cu content in a unique murine model of accelerated aging, senescence accelerated mouse-prone 8 (SAMP8) mice. Our results confirm an age-related increase in ventricle Cu content, consistent with the studies by others in wild-type mice and rats. Specifically, we observed Cu content to increase over the time frame 1 to 5 months and 5 to 9 months, but interestingly, no significant increase occurred between 9 and 12 months (although brain Cu content at 12 months was significantly elevated relative to 1 and 5 month-old animals). Despite the magnitude of Cu increase observed within the cells that comprise the subventricular zone of lateral ventricles (average 3 mM Cu, with isolated subcellular concentrations of 17 mM), we did not detect spectroscopic markers of thiol oxidation, protein aggregation, or lipid oxidation. The lack of evidence for oxidative stress in <i>ex vivo</i> animal tissue is in contrast to <i>in vitro</i> studies demonstrating that thiol, protein, and lipid oxidation is pronounced at these Cu concentrations. We suggest that our findings most likely indicate that the Cu ions in this brain region are sequestered in an unreactive form, possibly extended chains of Cu-thiolate complexes, which do not readily redox cycle in the aqueous cytosol. These results also appear to partially challenge the long-held view that age-related increases in brain metal content drive oxidative stress as we did not observe a concomitant association between age-related Cu increase and markers of oxidative stress, nor did we observe a net increase in Cu content between mice aged 9 and 12 months.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00320","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural aging is associated with mild memory loss and cognitive decline, and age is the greatest risk factor for neurodegenerative diseases, such as Alzheimer's disease. There is substantial evidence that oxidative stress is a major contributor to both natural aging and neurodegenerative disease, and coincidently, levels of redox active metals such as Fe and Cu are known to be elevated later in life. Recently, a pronounced age-related increase in Cu content has been reported to occur in mice and rats around a vital regulatory brain region, the subventricular zone of lateral ventricles. In our study herein, we have characterized lateral ventricle Cu content in a unique murine model of accelerated aging, senescence accelerated mouse-prone 8 (SAMP8) mice. Our results confirm an age-related increase in ventricle Cu content, consistent with the studies by others in wild-type mice and rats. Specifically, we observed Cu content to increase over the time frame 1 to 5 months and 5 to 9 months, but interestingly, no significant increase occurred between 9 and 12 months (although brain Cu content at 12 months was significantly elevated relative to 1 and 5 month-old animals). Despite the magnitude of Cu increase observed within the cells that comprise the subventricular zone of lateral ventricles (average 3 mM Cu, with isolated subcellular concentrations of 17 mM), we did not detect spectroscopic markers of thiol oxidation, protein aggregation, or lipid oxidation. The lack of evidence for oxidative stress in ex vivo animal tissue is in contrast to in vitro studies demonstrating that thiol, protein, and lipid oxidation is pronounced at these Cu concentrations. We suggest that our findings most likely indicate that the Cu ions in this brain region are sequestered in an unreactive form, possibly extended chains of Cu-thiolate complexes, which do not readily redox cycle in the aqueous cytosol. These results also appear to partially challenge the long-held view that age-related increases in brain metal content drive oxidative stress as we did not observe a concomitant association between age-related Cu increase and markers of oxidative stress, nor did we observe a net increase in Cu content between mice aged 9 and 12 months.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research