Microwave-Assisted Rapid Hydrothermal Synthesis of Vanadium-Based Cathode: Unravelling Charge Storage Mechanisms in Aqueous Zinc-Ion Batteries.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2025-01-27 DOI:10.1002/cssc.202402445
Selin Sariyer, Nilanka M Keppetipola, Ozlem Sel, Rezan Demir-Cakan
{"title":"Microwave-Assisted Rapid Hydrothermal Synthesis of Vanadium-Based Cathode: Unravelling Charge Storage Mechanisms in Aqueous Zinc-Ion Batteries.","authors":"Selin Sariyer, Nilanka M Keppetipola, Ozlem Sel, Rezan Demir-Cakan","doi":"10.1002/cssc.202402445","DOIUrl":null,"url":null,"abstract":"<p><p>This contribution uses a rapid microwave-assisted hydrothermal synthesis method to produce a vanadium-based K1.92Mn0.54V2O5·H2O cathode material (quoted as KMnVOH). The electrochemical performance of KMnVOH is tested in an aqueous electrolyte, which exhibits a remarkable specific capacity of 260 mA·h g-1 at 5 C and retains 94% of its capacity over 2000 cycles. In contrast to the aqueous electrolyte, the KMnVOH electrode tested in the organic electrolyte provides a modest discharge capacity of 60 mAh⋅g-1 at C/10, and the electrogravimetric analysis indicates that the charge storage mechanism is solely due to non-solvated Zn2+ intercalation. In aqueous electrolyte tests, Zn species insertion, interfacial pH increase, and subsequent formation of Znx(OH)y(CF3SO3)2x-y·nH2O (ZHT) are supported by in-situ EQCM. Ex-situ XRD measurements also confirm the ZHT formation and its characteristic plate-like structure is observed by SEM. The ion diffusion coefficient values in aqueous and non-aqueous electrolytes are very similar according to the GITT analysis, while it is expected to be higher in aqueous electrolytes. These results may further emphasize the complex redox dynamics in the aqueous electrolyte, namely the difficulty of intercalation of bare Zn2+, strong Zn2+ solvation in the bulk electrolyte, solvent or proton intercalation, and ZHT formation.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402445"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402445","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This contribution uses a rapid microwave-assisted hydrothermal synthesis method to produce a vanadium-based K1.92Mn0.54V2O5·H2O cathode material (quoted as KMnVOH). The electrochemical performance of KMnVOH is tested in an aqueous electrolyte, which exhibits a remarkable specific capacity of 260 mA·h g-1 at 5 C and retains 94% of its capacity over 2000 cycles. In contrast to the aqueous electrolyte, the KMnVOH electrode tested in the organic electrolyte provides a modest discharge capacity of 60 mAh⋅g-1 at C/10, and the electrogravimetric analysis indicates that the charge storage mechanism is solely due to non-solvated Zn2+ intercalation. In aqueous electrolyte tests, Zn species insertion, interfacial pH increase, and subsequent formation of Znx(OH)y(CF3SO3)2x-y·nH2O (ZHT) are supported by in-situ EQCM. Ex-situ XRD measurements also confirm the ZHT formation and its characteristic plate-like structure is observed by SEM. The ion diffusion coefficient values in aqueous and non-aqueous electrolytes are very similar according to the GITT analysis, while it is expected to be higher in aqueous electrolytes. These results may further emphasize the complex redox dynamics in the aqueous electrolyte, namely the difficulty of intercalation of bare Zn2+, strong Zn2+ solvation in the bulk electrolyte, solvent or proton intercalation, and ZHT formation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
这篇论文采用快速微波辅助水热合成法制备了一种钒基 K1.92Mn0.54V2O5-H2O 阴极材料(简称 KMnVOH)。在水性电解质中测试了 KMnVOH 的电化学性能,结果表明,在 5 C 条件下,KMnVOH 的比容量高达 260 mA-h g-1,并且在 2000 次循环后仍能保持 94% 的容量。与水性电解质不同,在有机电解质中测试的 KMnVOH 电极在 C/10 温度下的放电容量为 60 mAh⋅g-1 ,电重分析表明电荷存储机制完全是由于非溶解的 Zn2+ 插层造成的。在水性电解质测试中,原位 EQCM 证实了 Zn 物种的插入、界面 pH 值的升高以及随后形成的 Znx(OH)y(CF3SO3)2x-y-nH2O (ZHT)。原位 XRD 测量也证实了 ZHT 的形成,并通过 SEM 观察到其特有的板状结构。根据 GITT 分析,水性电解质和非水性电解质中的离子扩散系数值非常相似,而水性电解质中的离子扩散系数预计会更高。这些结果可能进一步强调了水基电解质中复杂的氧化还原动力学,即裸 Zn2+ 难以插层、Zn2+ 在主体电解质中的强溶解、溶剂或质子插层以及 ZHT 的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Access to Highly Functional and Polymerizable Carbonate-Drug Conjugates. Exploring the Potential of H-zeolites as Heterogeneous Catalysts for the Chemical Recycling of Polysaccharides and their Flexible Films. Scope and Limitations of the Use of Methanesulfonic Acid (MSA) as a Green Acid for Global Deprotection in Solid-Phase Peptide Synthesis. The Roles of Hydroxyl Radicals and Superoxide in Oxidizing Aqueous Benzyl Alcohol under Ultrasound Irradiation. Continuous-Flow Synthesis of BiVO4 Nanoparticles: From laboratory scale to practical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1