{"title":"Development of Triphenylamine Derived Photosensitizers for Efficient Hydrogen Evolution from Water.","authors":"Yudong Wen, Linyu Fan, Xiao Yao, Cheuk-Lam Ho","doi":"10.1002/chem.202404542","DOIUrl":null,"url":null,"abstract":"<p><p>A series of new (donor)₂-donor-π-acceptor (D2-D-π-A) and (acceptor)₂-donor-π-acceptor (A2-D-π-A) organic photosensitizers based on the framework of (Z)-2-cyano-3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)acrylic acid have been synthesized and characterized. By incorporating groups with different electron-donating or withdrawing abilities, such as dibenzothiophene (DBT), dibenzofuran (DBF), and triazine (TA), into the triphenylamine segment, their photophysical properties have been regulated. Theoretical calculations were used to explore how various donor-acceptor combinations influence their hydrogen production performance. Notably, DBF-CN achieved the highest turnover number (TON) of 10,202 and an initial turnover frequency (TOFi) of 151.6 h⁻¹ under green light irradiation, with an initial activity (Activityi) of 113,532 μmol g⁻¹ h⁻¹ and an apparent quantum yield (AQYi) of 0.76%. This dye-sensitized-TiO2-Pt system is recognized as one of the most efficient and durable systems for photocatalytic hydrogen production under green light irradiation, as described in the literature, when compared using TOF and TON values. Experimental results indicate that the D2-D-π-A system significantly enhances photocatalytic hydrogen evolution (PHE) performance more effectively than the A2-D-π-A system, while also maintaining stability under prolonged light exposure.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202404542"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202404542","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A series of new (donor)₂-donor-π-acceptor (D2-D-π-A) and (acceptor)₂-donor-π-acceptor (A2-D-π-A) organic photosensitizers based on the framework of (Z)-2-cyano-3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)acrylic acid have been synthesized and characterized. By incorporating groups with different electron-donating or withdrawing abilities, such as dibenzothiophene (DBT), dibenzofuran (DBF), and triazine (TA), into the triphenylamine segment, their photophysical properties have been regulated. Theoretical calculations were used to explore how various donor-acceptor combinations influence their hydrogen production performance. Notably, DBF-CN achieved the highest turnover number (TON) of 10,202 and an initial turnover frequency (TOFi) of 151.6 h⁻¹ under green light irradiation, with an initial activity (Activityi) of 113,532 μmol g⁻¹ h⁻¹ and an apparent quantum yield (AQYi) of 0.76%. This dye-sensitized-TiO2-Pt system is recognized as one of the most efficient and durable systems for photocatalytic hydrogen production under green light irradiation, as described in the literature, when compared using TOF and TON values. Experimental results indicate that the D2-D-π-A system significantly enhances photocatalytic hydrogen evolution (PHE) performance more effectively than the A2-D-π-A system, while also maintaining stability under prolonged light exposure.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.