{"title":"Adenoviral Therapy for Cervical Cancer: From Targeted Modification to Immunotherapy.","authors":"Yufeng Li, Haibin Zhang, Wenhu Xin, Tiansheng Qin","doi":"10.2174/0118715206338559241112060553","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical cancer is a significant global health threat, ranking as the fourth most common malignancy among women and resulting in over 300,000 deaths annually. Although screening and vaccination initiatives have led to a decline in incidence rates, treatment options for advanced or recurrent cervical cancer remain inadequate, often proving ineffective and costly. In this context, adenoviral therapy has emerged as a promising strategy to enhance therapeutic outcomes. Adenoviruses are non-enveloped viruses that can efficiently infect a wide range of cells, including tumor cells, while exhibiting a favorable safety profile, making them suitable candidates for clinical applications. Adenoviral vectors possess the unique ability to package large segments of therapeutic genes, allowing for diverse treatment approaches, including oncolytic virotherapy, which selectively targets and destroys tumor cells while stimulating robust immune responses. By engineering adenoviruses to express tumor suppressor genes such as p53, researchers can restore critical apoptotic pathways often disrupted in cervical cancer. Furthermore, genetic modifications to capsid proteins can enhance the targeting of tumor cells and reduce the immunogenicity associated with these viral vectors. Additionally, adenoviral vectors can serve as delivery systems for therapeutic vaccines against HPV oncogenes E6 and E7, promoting effective immune responses and potentially preventing disease progression. The combination of adenoviral therapy with immune checkpoint inhibitors offers a novel approach to overcoming the immunosuppressive tumor microenvironment, enhancing overall antitumor immunity. Overall, this review highlights the significant advancements in adenoviral therapy for cervical cancer, emphasizing the need for further research to optimize these strategies and translate preclinical successes into effective clinical applications. By harnessing the full potential of adenoviral vectors, we can improve treatment options for patients who have cervical cancer, paving the way for more personalized and effective therapeutic interventions.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206338559241112060553","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cervical cancer is a significant global health threat, ranking as the fourth most common malignancy among women and resulting in over 300,000 deaths annually. Although screening and vaccination initiatives have led to a decline in incidence rates, treatment options for advanced or recurrent cervical cancer remain inadequate, often proving ineffective and costly. In this context, adenoviral therapy has emerged as a promising strategy to enhance therapeutic outcomes. Adenoviruses are non-enveloped viruses that can efficiently infect a wide range of cells, including tumor cells, while exhibiting a favorable safety profile, making them suitable candidates for clinical applications. Adenoviral vectors possess the unique ability to package large segments of therapeutic genes, allowing for diverse treatment approaches, including oncolytic virotherapy, which selectively targets and destroys tumor cells while stimulating robust immune responses. By engineering adenoviruses to express tumor suppressor genes such as p53, researchers can restore critical apoptotic pathways often disrupted in cervical cancer. Furthermore, genetic modifications to capsid proteins can enhance the targeting of tumor cells and reduce the immunogenicity associated with these viral vectors. Additionally, adenoviral vectors can serve as delivery systems for therapeutic vaccines against HPV oncogenes E6 and E7, promoting effective immune responses and potentially preventing disease progression. The combination of adenoviral therapy with immune checkpoint inhibitors offers a novel approach to overcoming the immunosuppressive tumor microenvironment, enhancing overall antitumor immunity. Overall, this review highlights the significant advancements in adenoviral therapy for cervical cancer, emphasizing the need for further research to optimize these strategies and translate preclinical successes into effective clinical applications. By harnessing the full potential of adenoviral vectors, we can improve treatment options for patients who have cervical cancer, paving the way for more personalized and effective therapeutic interventions.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.