Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biopolymers Pub Date : 2025-03-01 DOI:10.1002/bip.70004
Yuxin Liu, Qinghua Pan, Zesheng Liang, Jingqiao Li, Rulong Wu
{"title":"Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch.","authors":"Yuxin Liu, Qinghua Pan, Zesheng Liang, Jingqiao Li, Rulong Wu","doi":"10.1002/bip.70004","DOIUrl":null,"url":null,"abstract":"<p><p>The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased. Under the cross-linking action of STMP, the porous starch particles are cross-linked and agglomerated together. The crystalline form of porous starch presents A + V type, and crystallinity increased after crosslinking. The crosslinked porous starches have higher short-range ordering comparing to the porous without crosslinked porous starch. The crosslinking degree, melting enthalpy and melting peak of starch increased with the increase of STMP content. The bulk density and the vibrated density of the porous starch increased after crosslinking. With the increase of the content of STMP, the water and oil absorption of porous starch increased and then decreased. The MB adsorption capacity of crosslinked porous starch has the maximum value with the STMP 20 wt% content. MB adsorption behavior of porous starch is more consistent with the pseudo-second-order kinetic model, and the equilibrium adsorption increased after crosslinking.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 2","pages":"e70004"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bip.70004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased. Under the cross-linking action of STMP, the porous starch particles are cross-linked and agglomerated together. The crystalline form of porous starch presents A + V type, and crystallinity increased after crosslinking. The crosslinked porous starches have higher short-range ordering comparing to the porous without crosslinked porous starch. The crosslinking degree, melting enthalpy and melting peak of starch increased with the increase of STMP content. The bulk density and the vibrated density of the porous starch increased after crosslinking. With the increase of the content of STMP, the water and oil absorption of porous starch increased and then decreased. The MB adsorption capacity of crosslinked porous starch has the maximum value with the STMP 20 wt% content. MB adsorption behavior of porous starch is more consistent with the pseudo-second-order kinetic model, and the equilibrium adsorption increased after crosslinking.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
期刊最新文献
Evaluating Electrospun Polycaprolactone Fibers for Blood-Contacting Applications. Plasma-Activated Water/Ultrasound as a Green Method to Modify Wood Fiber By-Product: Insights of Their Mechanical Performance in Polylactic Acid-Based Biofilms. Eco-Friendly Fabrication of FeS2 QD-Chitosan Biopolymer Composites: Green Synthetic Approach. Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch. Reversible Redox Controlled DNA Condensation by a Simple Noncanonical Dicationic Diphenylalanine Derivative.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1