Developing a clinical prediction model to modify empirical antibiotics for non-typhoidal Salmonella bloodstream infection in children under-five in the Democratic Republic of Congo.

IF 3.4 3区 医学 Q2 INFECTIOUS DISEASES BMC Infectious Diseases Pub Date : 2025-01-27 DOI:10.1186/s12879-024-10319-x
Bieke Tack, Daniel Vita, Jules Mbuyamba, Emmanuel Ntangu, Hornela Vuvu, Immaculée Kahindo, Japhet Ngina, Aimée Luyindula, Naomie Nama, Tito Mputu, Justin Im, Hyonjin Jeon, Florian Marks, Jaan Toelen, Octavie Lunguya, Jan Jacobs, Ben Van Calster
{"title":"Developing a clinical prediction model to modify empirical antibiotics for non-typhoidal Salmonella bloodstream infection in children under-five in the Democratic Republic of Congo.","authors":"Bieke Tack, Daniel Vita, Jules Mbuyamba, Emmanuel Ntangu, Hornela Vuvu, Immaculée Kahindo, Japhet Ngina, Aimée Luyindula, Naomie Nama, Tito Mputu, Justin Im, Hyonjin Jeon, Florian Marks, Jaan Toelen, Octavie Lunguya, Jan Jacobs, Ben Van Calster","doi":"10.1186/s12879-024-10319-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Non-typhoidal Salmonella (NTS) frequently cause bloodstream infection in children under-five in sub-Saharan Africa, particularly in malaria-endemic areas. Due to increasing drug resistance, NTS are often not covered by standard-of-care empirical antibiotics for severe febrile illness. We developed a clinical prediction model to orient the choice of empirical antibiotics (standard-of-care versus alternative antibiotics) for children admitted to hospital in settings with high proportions of drug-resistant NTS.</p><p><strong>Methods: </strong>Data were collected during a prospective cohort study in children (> 28 days-< 5 years) admitted with severe febrile illness to Kisantu district hospital, DR Congo. The outcome variable was blood culture confirmed NTS bloodstream infection; the comparison group were children without NTS bloodstream infection. Predictors were selected a priori based on systematic literature review. The prediction model was developed with multivariable logistic regression; a simplified scoring system was derived. Internal validation to estimate optimism-corrected performance was performed using bootstrapping and net benefits were calculated to evaluate clinical usefulness.</p><p><strong>Results: </strong>NTS bloodstream infection was diagnosed in 12.7% (295/2327) of enrolled children. The area under the curve was 0.79 (95%CI: 0.76-0.82) for the prediction model, and 0.78 (0.85-0.80) for the scoring system. The estimated calibration slopes were 0.95 (model) and 0.91 (scoring system). At a decision threshold of 20% NTS risk, the prediction model and scoring system had 57% and 53% sensitivity, and 85% specificity. The net benefit for decisions thresholds < 30% ranged from 2.4 to 3.9 per 100 children.</p><p><strong>Conclusion: </strong>The model predicts NTS bloodstream infection and can support the choice of empiric antibiotics to include coverage of drug-resistant NTS, in particular for decision thresholds < 30%. External validation studies are needed to investigate generalizability.</p><p><strong>Trial registration: </strong>DeNTS study, clinicaltrials.gov: NCT04473768 (registration 16/07/2020) and TreNTS study, clinicaltrials.gov: NCT04850677 (registration 20/04/2021).</p>","PeriodicalId":8981,"journal":{"name":"BMC Infectious Diseases","volume":"25 1","pages":"122"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771121/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12879-024-10319-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Non-typhoidal Salmonella (NTS) frequently cause bloodstream infection in children under-five in sub-Saharan Africa, particularly in malaria-endemic areas. Due to increasing drug resistance, NTS are often not covered by standard-of-care empirical antibiotics for severe febrile illness. We developed a clinical prediction model to orient the choice of empirical antibiotics (standard-of-care versus alternative antibiotics) for children admitted to hospital in settings with high proportions of drug-resistant NTS.

Methods: Data were collected during a prospective cohort study in children (> 28 days-< 5 years) admitted with severe febrile illness to Kisantu district hospital, DR Congo. The outcome variable was blood culture confirmed NTS bloodstream infection; the comparison group were children without NTS bloodstream infection. Predictors were selected a priori based on systematic literature review. The prediction model was developed with multivariable logistic regression; a simplified scoring system was derived. Internal validation to estimate optimism-corrected performance was performed using bootstrapping and net benefits were calculated to evaluate clinical usefulness.

Results: NTS bloodstream infection was diagnosed in 12.7% (295/2327) of enrolled children. The area under the curve was 0.79 (95%CI: 0.76-0.82) for the prediction model, and 0.78 (0.85-0.80) for the scoring system. The estimated calibration slopes were 0.95 (model) and 0.91 (scoring system). At a decision threshold of 20% NTS risk, the prediction model and scoring system had 57% and 53% sensitivity, and 85% specificity. The net benefit for decisions thresholds < 30% ranged from 2.4 to 3.9 per 100 children.

Conclusion: The model predicts NTS bloodstream infection and can support the choice of empiric antibiotics to include coverage of drug-resistant NTS, in particular for decision thresholds < 30%. External validation studies are needed to investigate generalizability.

Trial registration: DeNTS study, clinicaltrials.gov: NCT04473768 (registration 16/07/2020) and TreNTS study, clinicaltrials.gov: NCT04850677 (registration 20/04/2021).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Infectious Diseases
BMC Infectious Diseases 医学-传染病学
CiteScore
6.50
自引率
0.00%
发文量
860
审稿时长
3.3 months
期刊介绍: BMC Infectious Diseases is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of infectious and sexually transmitted diseases in humans, as well as related molecular genetics, pathophysiology, and epidemiology.
期刊最新文献
Complex and severe infection in a 67-year-old liver transplant recipient due to Cunninghamella elegans, Bordetella bronchiseptica, and Pneumocystis jirovecii. Evaluation of pulmonary tuberculosis disease burden in Shenyang, China, 2023. Isolation, genetic, and biological characterization of human adenovirus type 55 positive isolates from Wuhan, China. Regional differences in triage decisions affect hospital mortality among frail COVID-19 patients in the COvid MEdicaTion study. Changing trends in human brucellosis in pastoral and agricultural China, 2004-2019: a Joinpoint regression analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1