Analysis of the potential biological mechanisms of geniposide on renal fibrosis by network pharmacology and experimental verification.

IF 2.8 3区 医学 Q2 PHARMACOLOGY & PHARMACY BMC Pharmacology & Toxicology Pub Date : 2025-01-27 DOI:10.1186/s40360-025-00855-w
Mengqian Liu, Wenman Zhao, Rui Shi, Zhijuan Wang, Xunliang Li, Deguang Wang
{"title":"Analysis of the potential biological mechanisms of geniposide on renal fibrosis by network pharmacology and experimental verification.","authors":"Mengqian Liu, Wenman Zhao, Rui Shi, Zhijuan Wang, Xunliang Li, Deguang Wang","doi":"10.1186/s40360-025-00855-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Renal fibrosis is crucial in the progression of chronic kidney disease (CKD) to end-stage renal failure. Geniposide, an iridoid glycoside, has shown therapeutic potential in acute kidney injury, diabetic nephropathy, and atherosclerosis. The aim of this study was to investigate the role of geniposide in renal fibrosis and its underlying mechanisms.</p><p><strong>Methods: </strong>The network pharmacology and molecular docking methods were used to identify potential targets and pathways of geniposide for treating renal fibrosis. In vivo, the unilateral ureteral obstruction (UUO) mouse model was treated with geniposide. In vitro, TGF-β1-stimulated human renal tubular epithelial (HK-2) cells were applied for validation. HE, PAS, Masson, and immunohistochemistry staining were performed to evaluate its effects on the kidneys of UUO mice. RT-qPCR and western blotting were used to detect the expression of hub genes and signaling pathways.</p><p><strong>Results: </strong>101 overlapping genes were identified, with the top 10 including AKT1, MMP9, GAPDH, BCL2, TNF, CASP3, SRC, EGFR, IL-1β, and STAT1. GO analysis suggested that these key targets were mainly involved in cell proliferation and apoptosis. KEGG analysis revealed that the PI3K/AKT, MAPK, and Rap1 signaling pathways were associated with geniposide against renal fibrosis. Molecular docking suggested a strong binding affinity of geniposide to the hub genes. In vivo experiments showed that geniposide ameliorated kidney injury and fibrosis, and inhibited the mRNA levels of AKT1, MMP9, BCL2, and TNF. In addition, geniposide inhibited the activation of the PI3K/AKT signaling pathway, thereby suppressing renal fibrosis in UUO mice and TGF-β1-induced HK-2 cells.</p><p><strong>Conclusions: </strong>Geniposide can attenuate renal fibrosis by inhibiting the PI3K/AKT pathway, suggesting its potential as a therapeutic agent for renal fibrosis.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"26 1","pages":"17"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-025-00855-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Renal fibrosis is crucial in the progression of chronic kidney disease (CKD) to end-stage renal failure. Geniposide, an iridoid glycoside, has shown therapeutic potential in acute kidney injury, diabetic nephropathy, and atherosclerosis. The aim of this study was to investigate the role of geniposide in renal fibrosis and its underlying mechanisms.

Methods: The network pharmacology and molecular docking methods were used to identify potential targets and pathways of geniposide for treating renal fibrosis. In vivo, the unilateral ureteral obstruction (UUO) mouse model was treated with geniposide. In vitro, TGF-β1-stimulated human renal tubular epithelial (HK-2) cells were applied for validation. HE, PAS, Masson, and immunohistochemistry staining were performed to evaluate its effects on the kidneys of UUO mice. RT-qPCR and western blotting were used to detect the expression of hub genes and signaling pathways.

Results: 101 overlapping genes were identified, with the top 10 including AKT1, MMP9, GAPDH, BCL2, TNF, CASP3, SRC, EGFR, IL-1β, and STAT1. GO analysis suggested that these key targets were mainly involved in cell proliferation and apoptosis. KEGG analysis revealed that the PI3K/AKT, MAPK, and Rap1 signaling pathways were associated with geniposide against renal fibrosis. Molecular docking suggested a strong binding affinity of geniposide to the hub genes. In vivo experiments showed that geniposide ameliorated kidney injury and fibrosis, and inhibited the mRNA levels of AKT1, MMP9, BCL2, and TNF. In addition, geniposide inhibited the activation of the PI3K/AKT signaling pathway, thereby suppressing renal fibrosis in UUO mice and TGF-β1-induced HK-2 cells.

Conclusions: Geniposide can attenuate renal fibrosis by inhibiting the PI3K/AKT pathway, suggesting its potential as a therapeutic agent for renal fibrosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Pharmacology & Toxicology
BMC Pharmacology & Toxicology PHARMACOLOGY & PHARMACYTOXICOLOGY&nb-TOXICOLOGY
CiteScore
4.80
自引率
0.00%
发文量
87
审稿时长
12 weeks
期刊介绍: BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.
期刊最新文献
Analysis of the potential biological mechanisms of geniposide on renal fibrosis by network pharmacology and experimental verification. In vivo toxicological evaluation of 3-benzylideneindolin-2-one: antifungal activity against clinical isolates of dermatophytes. Conditioned medium from human adipose-derived mesenchymal stem cells attenuates cardiac injury induced by Movento in male rats: role of oxidative stress and inflammation. Effect of combination therapy of methylfolate with antidepressants in patients with depressive disorder. Investigation of the protective effects of dichloroacetic acid in a rat model of diabetic neuropathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1