Development, optimization and application of a universal fluorescence multiplex PCR-based assay to detect BCOR genetic alterations in pediatric tumors.
Meng Zhang, Xingfeng Yao, Nan Zhang, Yongbo Yu, Chao Jia, Xiaoxing Guan, Wenjian Xu, Xin Ni, Yongli Guo, Lejian He
{"title":"Development, optimization and application of a universal fluorescence multiplex PCR-based assay to detect BCOR genetic alterations in pediatric tumors.","authors":"Meng Zhang, Xingfeng Yao, Nan Zhang, Yongbo Yu, Chao Jia, Xiaoxing Guan, Wenjian Xu, Xin Ni, Yongli Guo, Lejian He","doi":"10.1186/s13000-025-01604-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A number of genetic aberrations are associated with the BCL6-correpresor gene (BCOR), including internal tandem duplications (ITDs) and gene fusions (BCOR::CCNB3 and BCOR::MAML3), as well as YWHAE::NUTM2, which are found in clear cell sarcoma of the kidney (CCSK), sarcoma with BCOR genetic alterations, primitive myxoid mesenchymal tumor of infancy, and high-grade neuroepithelial tumors in children. Detecting these gene aberrations is crucial for tumor diagnosis. ITDs can be identified by Sanger sequencing or agarose gel electrophoresis. However, gene fusions are usually detected through reverse transcription-polymerase chain reaction (RT-PCR) or fluorescence in situ hybridization. Methods that analyze these variants simultaneously in a sensitive and convenient manner are lacking in clinical practice.</p><p><strong>Methods: </strong>This study validated a Universal Fluorescence Multiplex PCR-based assay that assessed BCOR ITDs, BCOR::CCNB3, BCOR::MAML3 and YWHAE::NUTM2 fusions simultaneously.</p><p><strong>Results: </strong>The assay achieved a detection threshold of 10 copies for fusion genes and 0.32 ng genomic DNA for BCOR ITDs. The performance of this assay was also tested in a cohort of 43 pediatric tumors (17 undifferentiated small round cell sarcomas, and 26 tumors with a histological diagnosis of CCSK). In total, 20 BCOR ITDs, 4 BCOR::CCNB3 and one YWHAE::NUTM2 were detected. When compared with the final diagnosis, the assay achieved 93% sensitivity and 100% specificity.</p><p><strong>Conclusions: </strong>Accordingly, this assay provided an effective and convenient method for detecting BCOR- and YWHAE-related abnormalities in tumors.</p>","PeriodicalId":11237,"journal":{"name":"Diagnostic Pathology","volume":"20 1","pages":"11"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13000-025-01604-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: A number of genetic aberrations are associated with the BCL6-correpresor gene (BCOR), including internal tandem duplications (ITDs) and gene fusions (BCOR::CCNB3 and BCOR::MAML3), as well as YWHAE::NUTM2, which are found in clear cell sarcoma of the kidney (CCSK), sarcoma with BCOR genetic alterations, primitive myxoid mesenchymal tumor of infancy, and high-grade neuroepithelial tumors in children. Detecting these gene aberrations is crucial for tumor diagnosis. ITDs can be identified by Sanger sequencing or agarose gel electrophoresis. However, gene fusions are usually detected through reverse transcription-polymerase chain reaction (RT-PCR) or fluorescence in situ hybridization. Methods that analyze these variants simultaneously in a sensitive and convenient manner are lacking in clinical practice.
Methods: This study validated a Universal Fluorescence Multiplex PCR-based assay that assessed BCOR ITDs, BCOR::CCNB3, BCOR::MAML3 and YWHAE::NUTM2 fusions simultaneously.
Results: The assay achieved a detection threshold of 10 copies for fusion genes and 0.32 ng genomic DNA for BCOR ITDs. The performance of this assay was also tested in a cohort of 43 pediatric tumors (17 undifferentiated small round cell sarcomas, and 26 tumors with a histological diagnosis of CCSK). In total, 20 BCOR ITDs, 4 BCOR::CCNB3 and one YWHAE::NUTM2 were detected. When compared with the final diagnosis, the assay achieved 93% sensitivity and 100% specificity.
Conclusions: Accordingly, this assay provided an effective and convenient method for detecting BCOR- and YWHAE-related abnormalities in tumors.
期刊介绍:
Diagnostic Pathology is an open access, peer-reviewed, online journal that considers research in surgical and clinical pathology, immunology, and biology, with a special focus on cutting-edge approaches in diagnostic pathology and tissue-based therapy. The journal covers all aspects of surgical pathology, including classic diagnostic pathology, prognosis-related diagnosis (tumor stages, prognosis markers, such as MIB-percentage, hormone receptors, etc.), and therapy-related findings. The journal also focuses on the technological aspects of pathology, including molecular biology techniques, morphometry aspects (stereology, DNA analysis, syntactic structure analysis), communication aspects (telecommunication, virtual microscopy, virtual pathology institutions, etc.), and electronic education and quality assurance (for example interactive publication, on-line references with automated updating, etc.).