Comparative characterization of organ-specific phase I and II biotransformation enzyme kinetics in salmonid S9 sub-cellular fractions and cell lines.

IF 5.3 2区 医学 Q2 CELL BIOLOGY Cell Biology and Toxicology Pub Date : 2025-01-28 DOI:10.1007/s10565-025-09992-8
Baptiste P M Martin, Marco E Franco, Kristin Schirmer
{"title":"Comparative characterization of organ-specific phase I and II biotransformation enzyme kinetics in salmonid S9 sub-cellular fractions and cell lines.","authors":"Baptiste P M Martin, Marco E Franco, Kristin Schirmer","doi":"10.1007/s10565-025-09992-8","DOIUrl":null,"url":null,"abstract":"<p><p>Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines. Cyp1a and glutathione S-transferase (Gst) activities were the highest in liver S9 fractions and RTL-W1 liver cells, yet systems derived from the intestine, gills, and brain also displayed these biotransformation pathways. Cyp3a-like activity was only measurable in liver and intestinal S9 fractions, but all rainbow trout cell lines, including RTgill-W1 and RTbrain, displayed this type of activity. Furthermore, despite RTgutGC having the highest constitutive Cyp3a-like activity, its inducibility was the highest in RTL-W1 cells. Similarly, both RTL-W1 and RTgutGC cells displayed Cyp2b-like activity, but this was only measurable upon induction. Contrarily, S9 fractions from the liver, intestine and gills displayed constitutive Cyp2b-like activity. While these differences could be related to differential functionality of biological processes at the in vivo level, we provide important evidence of a broad spectrum of in vitro enzymatic activity in salmonid models. As such, both S9 fractions and cell lines represent important alternatives to animal testing for evaluating the biotransformation and bioaccumulation of environmental pollutants.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"37"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-025-09992-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines. Cyp1a and glutathione S-transferase (Gst) activities were the highest in liver S9 fractions and RTL-W1 liver cells, yet systems derived from the intestine, gills, and brain also displayed these biotransformation pathways. Cyp3a-like activity was only measurable in liver and intestinal S9 fractions, but all rainbow trout cell lines, including RTgill-W1 and RTbrain, displayed this type of activity. Furthermore, despite RTgutGC having the highest constitutive Cyp3a-like activity, its inducibility was the highest in RTL-W1 cells. Similarly, both RTL-W1 and RTgutGC cells displayed Cyp2b-like activity, but this was only measurable upon induction. Contrarily, S9 fractions from the liver, intestine and gills displayed constitutive Cyp2b-like activity. While these differences could be related to differential functionality of biological processes at the in vivo level, we provide important evidence of a broad spectrum of in vitro enzymatic activity in salmonid models. As such, both S9 fractions and cell lines represent important alternatives to animal testing for evaluating the biotransformation and bioaccumulation of environmental pollutants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
期刊最新文献
UHRF1 promotes calcium oxalate-induced renal fibrosis by renal lipid deposition via bridging AMPK dephosphorylation. Esketamine alleviates depressive-like behavior in neuropathic pain mice through the METTL3-GluA1 pathway. Comparative characterization of organ-specific phase I and II biotransformation enzyme kinetics in salmonid S9 sub-cellular fractions and cell lines. Targeting p38γ synergistically enhances sorafenib-induced cytotoxicity in hepatocellular carcinoma. HSP27/IL-6 axis promotes OSCC chemoresistance, invasion and migration by orchestrating macrophages via a positive feedback loop.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1