Genetics of sorghum: grain quality, molecular aspects, and drought responses.

IF 3.6 3区 生物学 Q1 PLANT SCIENCES Planta Pub Date : 2025-01-28 DOI:10.1007/s00425-025-04628-x
Chalachew Endalamaw, Habte Nida, Dagmawit Tsegaye, Angeline van Biljon, Liezel Herselman, Maryke Labuschagne
{"title":"Genetics of sorghum: grain quality, molecular aspects, and drought responses.","authors":"Chalachew Endalamaw, Habte Nida, Dagmawit Tsegaye, Angeline van Biljon, Liezel Herselman, Maryke Labuschagne","doi":"10.1007/s00425-025-04628-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>Sorghum kernel composition is a crucial characteristic that determines its functional qualities. The total protein content of sorghum grain increases under drought stress, but starch, protein digestibility, and micronutrient contents decrease. Sorghum (Sorghum bicolor L.) is a staple source of starch, protein, and micronutrients in Ethiopia, where it is a key ingredient in local foods like injera and traditional beverages such as tela and areke. It has adapted remarkably to the diverse climatic conditions and soils of both highland and lowland regions. However, grain quality is influenced by climate change, drought stress, and genotype-environment interactions. Under drought conditions, sorghum shows reduced starch content, protein digestibility, and micronutrient levels, as well as increased kernel hardness and total protein content. The genetic and geographic diversity of sorghum makes it an adaptable crop, essential for breeding and diversity studies. Genome-wide association studies (GWAS) have emerged as essential tools for identifying candidate genes linked to key traits, thereby advancing genetic improvement initiatives, particularly for Ethiopian sorghum landraces. Advances in genotyping techniques, particularly genotyping-by-sequencing (GBS) and association mapping, have facilitated the identification of quantitative trait loci (QTL) associated with grain quality, enhancing breeding efficiency and the development of resilient, high-quality sorghum varieties. This review explored the genetic and phenotypic diversity of sorghum, focusing on grain quality traits, molecular mechanisms, and responses to drought stress.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"261 3","pages":"47"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-025-04628-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Main conclusion: Sorghum kernel composition is a crucial characteristic that determines its functional qualities. The total protein content of sorghum grain increases under drought stress, but starch, protein digestibility, and micronutrient contents decrease. Sorghum (Sorghum bicolor L.) is a staple source of starch, protein, and micronutrients in Ethiopia, where it is a key ingredient in local foods like injera and traditional beverages such as tela and areke. It has adapted remarkably to the diverse climatic conditions and soils of both highland and lowland regions. However, grain quality is influenced by climate change, drought stress, and genotype-environment interactions. Under drought conditions, sorghum shows reduced starch content, protein digestibility, and micronutrient levels, as well as increased kernel hardness and total protein content. The genetic and geographic diversity of sorghum makes it an adaptable crop, essential for breeding and diversity studies. Genome-wide association studies (GWAS) have emerged as essential tools for identifying candidate genes linked to key traits, thereby advancing genetic improvement initiatives, particularly for Ethiopian sorghum landraces. Advances in genotyping techniques, particularly genotyping-by-sequencing (GBS) and association mapping, have facilitated the identification of quantitative trait loci (QTL) associated with grain quality, enhancing breeding efficiency and the development of resilient, high-quality sorghum varieties. This review explored the genetic and phenotypic diversity of sorghum, focusing on grain quality traits, molecular mechanisms, and responses to drought stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Planta
Planta 生物-植物科学
CiteScore
7.20
自引率
2.30%
发文量
217
审稿时长
2.3 months
期刊介绍: Planta publishes timely and substantial articles on all aspects of plant biology. We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.
期刊最新文献
Genetics of sorghum: grain quality, molecular aspects, and drought responses. Dehydration rapidly induces expression of NCED genes from a single subclade in diverse eudicots. Statoliths function in gravity perception in plants: yes, no, yes! Maize kernel nutritional quality-an old challenge for modern breeders. RNAi-based biocontrol for crops: a revised expectation for a non-recent technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1