Interrupted versus uninterrupted anticoagulation for cardiac rhythm management device insertion.

IF 8.8 2区 医学 Q1 MEDICINE, GENERAL & INTERNAL Cochrane Database of Systematic Reviews Pub Date : 2025-01-28 DOI:10.1002/14651858.CD013816.pub2
Brett Chen, Mi Phan, Vinay Pasupuleti, Yuani M Roman, Adrian V Hernandez
{"title":"Interrupted versus uninterrupted anticoagulation for cardiac rhythm management device insertion.","authors":"Brett Chen, Mi Phan, Vinay Pasupuleti, Yuani M Roman, Adrian V Hernandez","doi":"10.1002/14651858.CD013816.pub2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Guideline-recommended strategies to interrupt chronic anticoagulation with warfarin or direct oral anticoagulants (DOAC) during the perioperative period of cardiac implantable electronic device (CIED) surgery differ worldwide. There is uncertainty concerning the benefits and harms of interrupted and uninterrupted anticoagulation in patients undergoing CIED surgery.</p><p><strong>Objectives: </strong>To assess the benefits and harms of interrupted anticoagulation (IAC) with either warfarin or DOAC in the perioperative period of CIED surgery versus uninterrupted anticoagulation (UAC), with or without heparin bridging, during an equivalent time frame, for CIED surgery.</p><p><strong>Search methods: </strong>CENTRAL, MEDLINE, Embase, Web of Science, and two trials registers were searched on 26 November 2021 together with reference checking, citation searching and contact with study authors to identify additional studies. We plan to update this review imminently.</p><p><strong>Selection criteria: </strong>We included randomized controlled trials (RCTs) evaluating IAC vs. UAC in adults with a diagnosed cardiac rhythm disorder, who underwent elective CIED surgery and received at least one month of warfarin or DOAC anticoagulation. Comparisons of interest were: (1) continued warfarin vs. interrupted warfarin anticoagulation, with or without heparin bridging; and (2) continued DOAC (apixaban, betrixaban, dabigatran, edoxaban, or rivaroxaban) vs. interrupted DOAC, with or without heparin bridging.</p><p><strong>Data collection and analysis: </strong>Primary outcomes were composite thromboembolic events (transient ischemic attack, ischemic stroke, deep vein thrombosis, pulmonary embolism, peripheral embolism, or valve thrombosis) and device-pocket hematoma. Secondary outcomes included individual components of composite thromboembolic events, composite bleeding events, all-cause mortality, adverse events, quality of life and days of hospitalization. Two authors independently selected studies, extracted data, and assessed the risk of bias. We assessed the certainty of evidence using GRADE. The inverse variance random-effects model was used for meta-analyses, and the DerSimonian and Laird method was used for calculating the between-study variance Tau<sup>2</sup>. Dichotomous outcomes were calculated as risk ratios (RRs) and we used mean differences (MDs) for continuous outcomes, with respective 95% confidence intervals (95% CIs).</p><p><strong>Main results: </strong>We identified 10 eligible studies (2221 participants), of which one is ongoing. Of these 10 studies, six compared IAC vs. UAC with warfarin (1267 participants) and four compared IAC vs. UAC with DOAC (954 participants). Follow-up duration ranged between 0.5 to three months. The mean age of participants ranged from 68 to 76 years. Definitions of thromboembolic events, device-pocket hematoma, and bleeding events varied across studies. IAC vs. UAC with warfarin IAC with warfarin may result in little to no difference in composite thromboembolic events (RR 0.85, 95% CI 0.18 to 4.11; 5 RCTs, n = 1266; low-certainty evidence). The evidence is very uncertain about the effect of IAC on device-pocket hematoma (RR 1.87, 95% CI 0.83 to 4.22; 5 RCTs, n = 1266; very low-certainty evidence), ischemic stroke (RR 0.70, 95% CI 0.11 to 4.40; 5 RCTs, n = 1266; very low-certainty evidence) and composite bleeding events (RR 1.92, 95% CI 0.84 to 4.43; 5 RCTs, very low-certainty evidence). IAC with warfarin likely results in little to no difference in deep vein thrombosis or pulmonary embolism (0 events in both groups; 2 RCTs, n = 782; moderate-certainty evidence). IAC may result in a slight reduction of all-cause mortality (RR 0.35, 95% CI 0.04 to 2.93; 3 RCTs, n = 953; low-certainty evidence). IAC vs. UAC with DOAC IAC with DOAC may result in little to no difference in composite thromboembolic events (RR 0.98, 95% CI 0.06 to 15.63; 3 RCTs, n = 843; low-certainty evidence) and ischemic stroke (RR 0.98, 95% CI 0.06 to 15.63, 2 RCTs, n = 763; low-certainty evidence). The evidence is very uncertain about the effect of IAC with DOAC on device-pocket hematoma (RR 1.07, 95% CI 0.55 to 2.11; 4 RCTs, n = 954; very low-certainty evidence) and composite bleeding events (RR 1.07, 95% CI 0.55 to 2.06; 4 RCTs, n = 954; very low-certainty evidence). IAC may result in little to no difference in ischemic stroke (RR 0.98, 95% CI 0.06 to 15.63, 2 RCTs, low-certainty evidence). IAC likely results in little to no difference in deep vein thrombosis or pulmonary embolism (0 events in both groups; 2 RCTs, n = 763; moderate-certainty evidence). IAC may result in a slight reduction of all-cause mortality (RR 0.49, 95% CI 0.04 to 5.39; 2 RCTs, n = 763; low-certainty evidence).</p><p><strong>Authors' conclusions: </strong>Interrupted anticoagulation in people undergoing elective CIED surgery had similar outcomes to uninterrupted anticoagulation with either warfarin or DOAC medications. Certainty of evidence was judged to be low to very low for most of the assessed outcomes. Further RCTs are particularly needed to help identify whether IAC significantly impacts the risks of thromboembolic events and device-pocket hematoma.</p>","PeriodicalId":10473,"journal":{"name":"Cochrane Database of Systematic Reviews","volume":"1 ","pages":"CD013816"},"PeriodicalIF":8.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cochrane Database of Systematic Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/14651858.CD013816.pub2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Guideline-recommended strategies to interrupt chronic anticoagulation with warfarin or direct oral anticoagulants (DOAC) during the perioperative period of cardiac implantable electronic device (CIED) surgery differ worldwide. There is uncertainty concerning the benefits and harms of interrupted and uninterrupted anticoagulation in patients undergoing CIED surgery.

Objectives: To assess the benefits and harms of interrupted anticoagulation (IAC) with either warfarin or DOAC in the perioperative period of CIED surgery versus uninterrupted anticoagulation (UAC), with or without heparin bridging, during an equivalent time frame, for CIED surgery.

Search methods: CENTRAL, MEDLINE, Embase, Web of Science, and two trials registers were searched on 26 November 2021 together with reference checking, citation searching and contact with study authors to identify additional studies. We plan to update this review imminently.

Selection criteria: We included randomized controlled trials (RCTs) evaluating IAC vs. UAC in adults with a diagnosed cardiac rhythm disorder, who underwent elective CIED surgery and received at least one month of warfarin or DOAC anticoagulation. Comparisons of interest were: (1) continued warfarin vs. interrupted warfarin anticoagulation, with or without heparin bridging; and (2) continued DOAC (apixaban, betrixaban, dabigatran, edoxaban, or rivaroxaban) vs. interrupted DOAC, with or without heparin bridging.

Data collection and analysis: Primary outcomes were composite thromboembolic events (transient ischemic attack, ischemic stroke, deep vein thrombosis, pulmonary embolism, peripheral embolism, or valve thrombosis) and device-pocket hematoma. Secondary outcomes included individual components of composite thromboembolic events, composite bleeding events, all-cause mortality, adverse events, quality of life and days of hospitalization. Two authors independently selected studies, extracted data, and assessed the risk of bias. We assessed the certainty of evidence using GRADE. The inverse variance random-effects model was used for meta-analyses, and the DerSimonian and Laird method was used for calculating the between-study variance Tau2. Dichotomous outcomes were calculated as risk ratios (RRs) and we used mean differences (MDs) for continuous outcomes, with respective 95% confidence intervals (95% CIs).

Main results: We identified 10 eligible studies (2221 participants), of which one is ongoing. Of these 10 studies, six compared IAC vs. UAC with warfarin (1267 participants) and four compared IAC vs. UAC with DOAC (954 participants). Follow-up duration ranged between 0.5 to three months. The mean age of participants ranged from 68 to 76 years. Definitions of thromboembolic events, device-pocket hematoma, and bleeding events varied across studies. IAC vs. UAC with warfarin IAC with warfarin may result in little to no difference in composite thromboembolic events (RR 0.85, 95% CI 0.18 to 4.11; 5 RCTs, n = 1266; low-certainty evidence). The evidence is very uncertain about the effect of IAC on device-pocket hematoma (RR 1.87, 95% CI 0.83 to 4.22; 5 RCTs, n = 1266; very low-certainty evidence), ischemic stroke (RR 0.70, 95% CI 0.11 to 4.40; 5 RCTs, n = 1266; very low-certainty evidence) and composite bleeding events (RR 1.92, 95% CI 0.84 to 4.43; 5 RCTs, very low-certainty evidence). IAC with warfarin likely results in little to no difference in deep vein thrombosis or pulmonary embolism (0 events in both groups; 2 RCTs, n = 782; moderate-certainty evidence). IAC may result in a slight reduction of all-cause mortality (RR 0.35, 95% CI 0.04 to 2.93; 3 RCTs, n = 953; low-certainty evidence). IAC vs. UAC with DOAC IAC with DOAC may result in little to no difference in composite thromboembolic events (RR 0.98, 95% CI 0.06 to 15.63; 3 RCTs, n = 843; low-certainty evidence) and ischemic stroke (RR 0.98, 95% CI 0.06 to 15.63, 2 RCTs, n = 763; low-certainty evidence). The evidence is very uncertain about the effect of IAC with DOAC on device-pocket hematoma (RR 1.07, 95% CI 0.55 to 2.11; 4 RCTs, n = 954; very low-certainty evidence) and composite bleeding events (RR 1.07, 95% CI 0.55 to 2.06; 4 RCTs, n = 954; very low-certainty evidence). IAC may result in little to no difference in ischemic stroke (RR 0.98, 95% CI 0.06 to 15.63, 2 RCTs, low-certainty evidence). IAC likely results in little to no difference in deep vein thrombosis or pulmonary embolism (0 events in both groups; 2 RCTs, n = 763; moderate-certainty evidence). IAC may result in a slight reduction of all-cause mortality (RR 0.49, 95% CI 0.04 to 5.39; 2 RCTs, n = 763; low-certainty evidence).

Authors' conclusions: Interrupted anticoagulation in people undergoing elective CIED surgery had similar outcomes to uninterrupted anticoagulation with either warfarin or DOAC medications. Certainty of evidence was judged to be low to very low for most of the assessed outcomes. Further RCTs are particularly needed to help identify whether IAC significantly impacts the risks of thromboembolic events and device-pocket hematoma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.60
自引率
2.40%
发文量
173
审稿时长
1-2 weeks
期刊介绍: The Cochrane Database of Systematic Reviews (CDSR) stands as the premier database for systematic reviews in healthcare. It comprises Cochrane Reviews, along with protocols for these reviews, editorials, and supplements. Owned and operated by Cochrane, a worldwide independent network of healthcare stakeholders, the CDSR (ISSN 1469-493X) encompasses a broad spectrum of health-related topics, including health services.
期刊最新文献
Dexmedetomidine for analgesia and sedation for procedural pain or discomfort in newborn infants. Home visiting for postpartum depression. Interrupted versus uninterrupted anticoagulation for cardiac rhythm management device insertion. Alendronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Caesarean myomectomy in pregnant women with uterine fibroids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1