CytoNorm 2.0: A flexible normalization framework for cytometry data without requiring dedicated controls.

IF 2.5 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Cytometry Part A Pub Date : 2025-01-28 DOI:10.1002/cyto.a.24910
Katrien L A Quintelier, Marcella Willemsen, Victor Bosteels, Joachim G J V Aerts, Yvan Saeys, Sofie Van Gassen
{"title":"CytoNorm 2.0: A flexible normalization framework for cytometry data without requiring dedicated controls.","authors":"Katrien L A Quintelier, Marcella Willemsen, Victor Bosteels, Joachim G J V Aerts, Yvan Saeys, Sofie Van Gassen","doi":"10.1002/cyto.a.24910","DOIUrl":null,"url":null,"abstract":"<p><p>Cytometry is a single cell, high-dimensional, high-throughput technique that is being applied across a range of disciplines. However, many elements alongside the data acquisition process might give rise to technical variation in the dataset, called batch effects. CytoNorm is a normalization algorithm for batch effect removal in cytometry data that was originally published in 2020 and has been applied on a variety of datasets since then. Here, we present CytoNorm 2.0, discussing new, illustrative use cases to increase the applicability of the algorithm and showcasing new visualizations that enable thorough quality control and understanding of the normalization process. We explain how CytoNorm can be used without the need for technical replicates or controls, show how the goal distribution can be tailored toward the experimental design and we elaborate on the choice of markers for CytoNorm's internal FlowSOM clustering step.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cyto.a.24910","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cytometry is a single cell, high-dimensional, high-throughput technique that is being applied across a range of disciplines. However, many elements alongside the data acquisition process might give rise to technical variation in the dataset, called batch effects. CytoNorm is a normalization algorithm for batch effect removal in cytometry data that was originally published in 2020 and has been applied on a variety of datasets since then. Here, we present CytoNorm 2.0, discussing new, illustrative use cases to increase the applicability of the algorithm and showcasing new visualizations that enable thorough quality control and understanding of the normalization process. We explain how CytoNorm can be used without the need for technical replicates or controls, show how the goal distribution can be tailored toward the experimental design and we elaborate on the choice of markers for CytoNorm's internal FlowSOM clustering step.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞测量是一种单细胞、高维、高通量技术,目前正被广泛应用于各个学科。然而,数据采集过程中的许多因素都可能导致数据集出现技术差异,即批次效应。CytoNorm 是一种用于消除细胞测量数据批次效应的归一化算法,最初发表于 2020 年,此后被应用于各种数据集。在此,我们将介绍 CytoNorm 2.0,讨论新的说明性用例,以提高该算法的适用性,并展示新的可视化方法,以实现全面的质量控制和对归一化过程的理解。我们解释了如何使用 CytoNorm 而不需要技术复制或对照,展示了如何根据实验设计定制目标分布,并详细说明了 CytoNorm 内部 FlowSOM 聚类步骤的标记选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cytometry Part A
Cytometry Part A 生物-生化研究方法
CiteScore
8.10
自引率
13.50%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques. The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome: Biomedical Instrumentation Engineering Biophotonics Bioinformatics Cell Biology Computational Biology Data Science Immunology Parasitology Microbiology Neuroscience Cancer Stem Cells Tissue Regeneration.
期刊最新文献
CytoNorm 2.0: A flexible normalization framework for cytometry data without requiring dedicated controls. A 37-Color Spectral Flow Cytometric Panel to Assess Transcription Factors and Chemokine Receptors in Human Intestinal Lymphoid Cells. Measuring the size of oil droplets in a flow cytometer using Mie resonances: A possible size calibration ladder for 0.5-6 μm. Ultrastructural Remodeling of Cardiomyocytes in Postinfarction Myocardium of Rats in the Late Stages of the Disease. Issue Information - TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1