Katrien L A Quintelier, Marcella Willemsen, Victor Bosteels, Joachim G J V Aerts, Yvan Saeys, Sofie Van Gassen
{"title":"CytoNorm 2.0: A flexible normalization framework for cytometry data without requiring dedicated controls.","authors":"Katrien L A Quintelier, Marcella Willemsen, Victor Bosteels, Joachim G J V Aerts, Yvan Saeys, Sofie Van Gassen","doi":"10.1002/cyto.a.24910","DOIUrl":null,"url":null,"abstract":"<p><p>Cytometry is a single cell, high-dimensional, high-throughput technique that is being applied across a range of disciplines. However, many elements alongside the data acquisition process might give rise to technical variation in the dataset, called batch effects. CytoNorm is a normalization algorithm for batch effect removal in cytometry data that was originally published in 2020 and has been applied on a variety of datasets since then. Here, we present CytoNorm 2.0, discussing new, illustrative use cases to increase the applicability of the algorithm and showcasing new visualizations that enable thorough quality control and understanding of the normalization process. We explain how CytoNorm can be used without the need for technical replicates or controls, show how the goal distribution can be tailored toward the experimental design and we elaborate on the choice of markers for CytoNorm's internal FlowSOM clustering step.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cyto.a.24910","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cytometry is a single cell, high-dimensional, high-throughput technique that is being applied across a range of disciplines. However, many elements alongside the data acquisition process might give rise to technical variation in the dataset, called batch effects. CytoNorm is a normalization algorithm for batch effect removal in cytometry data that was originally published in 2020 and has been applied on a variety of datasets since then. Here, we present CytoNorm 2.0, discussing new, illustrative use cases to increase the applicability of the algorithm and showcasing new visualizations that enable thorough quality control and understanding of the normalization process. We explain how CytoNorm can be used without the need for technical replicates or controls, show how the goal distribution can be tailored toward the experimental design and we elaborate on the choice of markers for CytoNorm's internal FlowSOM clustering step.
期刊介绍:
Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques.
The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome:
Biomedical Instrumentation Engineering
Biophotonics
Bioinformatics
Cell Biology
Computational Biology
Data Science
Immunology
Parasitology
Microbiology
Neuroscience
Cancer
Stem Cells
Tissue Regeneration.