Factors affecting microplastic pollution of sandboxes in urban residential areas: Simple methodology for quality control in the context of potential exposure assessment for children.
Karina Krzciuk, Sabina Dołęgowska, Agnieszka Gałuszka, Artur Michalik
{"title":"Factors affecting microplastic pollution of sandboxes in urban residential areas: Simple methodology for quality control in the context of potential exposure assessment for children.","authors":"Karina Krzciuk, Sabina Dołęgowska, Agnieszka Gałuszka, Artur Michalik","doi":"10.1093/etojnl/vgae056","DOIUrl":null,"url":null,"abstract":"<p><p>Occurrence of microplastics in the environment is well studied, but our knowledge of their distribution in specific locations, such as the sandboxes, which are integral parts of popular playgrounds for children, is limited. Pioneering research on the factors affecting the microplastic pollution of sandboxes in urban residential areas was conducted within three estates in Kielce, Poland. Sand samples (Σ27) were collected from nine sandboxes and examined for the presence of microplastics, using a simple quality control methodology proposed by the authors. Microplastics were found in each sample and their contents ranged from 60 to 5,540 items/kg of sand. Fragments and fibers were the most prevalent types of microplastics in the samples. They contributed to approximately 95% of all microplastics found. Transparent fibers were the most abundant among fibers (63%) and red particles (57%) among fragments. A strong, positive, and significant correlation (rSpearman = 0.90) was found between the number of microplastic items and the location of sandboxes (above sea level). There was no correlation between the population density of the estates (rSpearman = 0.03), the distance of the estates from the center (rSpearman = 0.02), and the distance of the estates from main roads (rSpearman = 0.43). Considering that sandboxes can be a potential source of microplastics for children, and assuming that sand ingestion by children is similar to the estimated daily soil ingestion rate, our results indicate that the number of microplastics ingested could be 1,106. Inhalation, dermal transport, and ingestion of microplastic particles from sandboxes pose a potential threat to children's health. However, more research is needed to better understand the health risks associated with this source of microplastics.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/etojnl/vgae056","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Occurrence of microplastics in the environment is well studied, but our knowledge of their distribution in specific locations, such as the sandboxes, which are integral parts of popular playgrounds for children, is limited. Pioneering research on the factors affecting the microplastic pollution of sandboxes in urban residential areas was conducted within three estates in Kielce, Poland. Sand samples (Σ27) were collected from nine sandboxes and examined for the presence of microplastics, using a simple quality control methodology proposed by the authors. Microplastics were found in each sample and their contents ranged from 60 to 5,540 items/kg of sand. Fragments and fibers were the most prevalent types of microplastics in the samples. They contributed to approximately 95% of all microplastics found. Transparent fibers were the most abundant among fibers (63%) and red particles (57%) among fragments. A strong, positive, and significant correlation (rSpearman = 0.90) was found between the number of microplastic items and the location of sandboxes (above sea level). There was no correlation between the population density of the estates (rSpearman = 0.03), the distance of the estates from the center (rSpearman = 0.02), and the distance of the estates from main roads (rSpearman = 0.43). Considering that sandboxes can be a potential source of microplastics for children, and assuming that sand ingestion by children is similar to the estimated daily soil ingestion rate, our results indicate that the number of microplastics ingested could be 1,106. Inhalation, dermal transport, and ingestion of microplastic particles from sandboxes pose a potential threat to children's health. However, more research is needed to better understand the health risks associated with this source of microplastics.
期刊介绍:
The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...]
Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.