Boosting human immunology: harnessing the potential of immune organoids.

IF 9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL EMBO Molecular Medicine Pub Date : 2025-01-27 DOI:10.1038/s44321-025-00193-8
Maximilian Moll, Dirk Baumjohann
{"title":"Boosting human immunology: harnessing the potential of immune organoids.","authors":"Maximilian Moll, Dirk Baumjohann","doi":"10.1038/s44321-025-00193-8","DOIUrl":null,"url":null,"abstract":"<p><p>Studying the human immune system in vivo is challenging and often not possible. Therefore, most human immunology studies have been predominantly confined to peripheral blood analyses, which by themselves have inherent limitations, as many immune reactions take place within tissues. For example, potent antibody responses that contribute to fighting infections and provide protection following vaccination require cellular interactions between B cells and T cells in specialized micro-anatomical structures called germinal centers, which are found in secondary lymphoid organs such as spleen, lymph nodes, and tonsils. Thus, there is a clear demand for novel enhanced experimental systems that faithfully recapitulate the intricate dynamics of the human immune system as much as possible. In this review, we discuss recent advances in versatile human tonsil/adenoid tissue-based ex vivo immune organoid cultures as well as related cancer and autoimmunity-focused experimental setups. These systems have been implemented as translational immunology platforms for in-depth analyses of human B and T cell-mediated immune responses, thereby facilitating mechanistic studies as well as drug and vaccine testing in a human-first approach.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00193-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Studying the human immune system in vivo is challenging and often not possible. Therefore, most human immunology studies have been predominantly confined to peripheral blood analyses, which by themselves have inherent limitations, as many immune reactions take place within tissues. For example, potent antibody responses that contribute to fighting infections and provide protection following vaccination require cellular interactions between B cells and T cells in specialized micro-anatomical structures called germinal centers, which are found in secondary lymphoid organs such as spleen, lymph nodes, and tonsils. Thus, there is a clear demand for novel enhanced experimental systems that faithfully recapitulate the intricate dynamics of the human immune system as much as possible. In this review, we discuss recent advances in versatile human tonsil/adenoid tissue-based ex vivo immune organoid cultures as well as related cancer and autoimmunity-focused experimental setups. These systems have been implemented as translational immunology platforms for in-depth analyses of human B and T cell-mediated immune responses, thereby facilitating mechanistic studies as well as drug and vaccine testing in a human-first approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Molecular Medicine
EMBO Molecular Medicine 医学-医学:研究与实验
CiteScore
17.70
自引率
0.90%
发文量
105
审稿时长
4-8 weeks
期刊介绍: EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance. To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields: Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention). Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease. Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)
期刊最新文献
Boosting human immunology: harnessing the potential of immune organoids. Exposomics: a review of methodologies, applications, and future directions in molecular medicine. FABP4 as a therapeutic host target controlling SARS-CoV-2 infection. Improving the odds of survival: transgenerational effects of infections. Gut microbiota interact with breast cancer therapeutics to modulate efficacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1