Juliana J Lee, Liang Yang, Jonathan J Kotzin, Dughan Ahimovic, Michael J Bale, Peter A Nigrovic, Steven Z Josefowicz, Diane Mathis, Christophe Benoist
{"title":"Early transcriptional effects of inflammatory cytokines reveal highly redundant cytokine networks.","authors":"Juliana J Lee, Liang Yang, Jonathan J Kotzin, Dughan Ahimovic, Michael J Bale, Peter A Nigrovic, Steven Z Josefowicz, Diane Mathis, Christophe Benoist","doi":"10.1084/jem.20241207","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory cytokines are fundamental mediators of the organismal response to injury, infection, or other harmful stimuli. To elucidate the early and mostly direct transcriptional signatures of inflammatory cytokines, we profiled all immunologic cell types by RNAseq after systemic exposure to IL1β, IL6, and TNFα. Our results revealed a significant overlap in the responses, with broad divergence between myeloid and lymphoid cells, but with very few cell-type-specific responses. Pathway and motif analysis identified several main controllers (NF-κB, IRF8, and PU.1), but the largest portion of the response appears to be mediated by MYC, which was also implicated in the response to γc cytokines. Indeed, inflammatory and γc cytokines elicited surprisingly similar responses (∼50% overlap in NK cells). Significant overlap with interferon-induced responses was observed, paradoxically in lymphoid but not myeloid cell types. These results point to a highly redundant cytokine network, with intertwined effects between disparate cytokines and cell types.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 4","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20241207","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammatory cytokines are fundamental mediators of the organismal response to injury, infection, or other harmful stimuli. To elucidate the early and mostly direct transcriptional signatures of inflammatory cytokines, we profiled all immunologic cell types by RNAseq after systemic exposure to IL1β, IL6, and TNFα. Our results revealed a significant overlap in the responses, with broad divergence between myeloid and lymphoid cells, but with very few cell-type-specific responses. Pathway and motif analysis identified several main controllers (NF-κB, IRF8, and PU.1), but the largest portion of the response appears to be mediated by MYC, which was also implicated in the response to γc cytokines. Indeed, inflammatory and γc cytokines elicited surprisingly similar responses (∼50% overlap in NK cells). Significant overlap with interferon-induced responses was observed, paradoxically in lymphoid but not myeloid cell types. These results point to a highly redundant cytokine network, with intertwined effects between disparate cytokines and cell types.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.