Deep learning system for the differential diagnosis of oral mucosal lesions through clinical photographic imaging

IF 3.4 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Journal of Dental Sciences Pub Date : 2025-01-01 DOI:10.1016/j.jds.2024.10.019
An-Yu Su , Ming-Long Wu , Yu-Hsueh Wu
{"title":"Deep learning system for the differential diagnosis of oral mucosal lesions through clinical photographic imaging","authors":"An-Yu Su ,&nbsp;Ming-Long Wu ,&nbsp;Yu-Hsueh Wu","doi":"10.1016/j.jds.2024.10.019","DOIUrl":null,"url":null,"abstract":"<div><h3>Background/purpose</h3><div>Oral mucosal lesions are associated with a variety of pathological conditions. Most deep-learning-based convolutional neural network (CNN) systems for computer-aided diagnosis of oral lesions have typically concentrated on determining limited aspects of differential diagnosis. This study aimed to develop a CNN-based diagnostic model capable of classifying clinical photographs of oral ulcerative and associated lesions into five different diagnoses, thereby assisting clinicians in making accurate differential diagnoses.</div></div><div><h3>Materials and methods</h3><div>A set of clinical images were selected, including 506 images of five different diagnoses. The images were pre-processed and randomly divided into two sets for training and testing the CNN model. The model architecture was composed of convolutional layers, batch normalization layers, max pooling layers, the dropout layer and fully-connected layers. Evaluation metrics included weighted-precision, weighted-recall, weighted-F1 score, average specificity, Cohen’s Kappa coefficient, normalized confusion matrix and AUC.</div></div><div><h3>Results</h3><div>The overall performance for the image classification showed a weighted-precision of 88.8%, a weighted-recall of 88.2%, a weighted-F1 score of 0.878, an average pecificity of 97.0%, a Kappa coefficient of 0.851, and an average AUC of 0.985.</div></div><div><h3>Conclusion</h3><div>The model achieved a decent classification performance (overall AUC=0.985), showing the capacity to discern between benign and malignant potential lesions, and laid the foundation of a novel tool that can help clinical differential diagnosis of oral mucosal lesions. The main challenges were the small and imbalanced dataset. Enlarging the minority classes, incorporating more oral mucosal lesion diagnoses, employing transfer learning and cross-validation might be included in future works to optimize the image classification model.</div></div>","PeriodicalId":15583,"journal":{"name":"Journal of Dental Sciences","volume":"20 1","pages":"Pages 54-60"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1991790224003623","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background/purpose

Oral mucosal lesions are associated with a variety of pathological conditions. Most deep-learning-based convolutional neural network (CNN) systems for computer-aided diagnosis of oral lesions have typically concentrated on determining limited aspects of differential diagnosis. This study aimed to develop a CNN-based diagnostic model capable of classifying clinical photographs of oral ulcerative and associated lesions into five different diagnoses, thereby assisting clinicians in making accurate differential diagnoses.

Materials and methods

A set of clinical images were selected, including 506 images of five different diagnoses. The images were pre-processed and randomly divided into two sets for training and testing the CNN model. The model architecture was composed of convolutional layers, batch normalization layers, max pooling layers, the dropout layer and fully-connected layers. Evaluation metrics included weighted-precision, weighted-recall, weighted-F1 score, average specificity, Cohen’s Kappa coefficient, normalized confusion matrix and AUC.

Results

The overall performance for the image classification showed a weighted-precision of 88.8%, a weighted-recall of 88.2%, a weighted-F1 score of 0.878, an average pecificity of 97.0%, a Kappa coefficient of 0.851, and an average AUC of 0.985.

Conclusion

The model achieved a decent classification performance (overall AUC=0.985), showing the capacity to discern between benign and malignant potential lesions, and laid the foundation of a novel tool that can help clinical differential diagnosis of oral mucosal lesions. The main challenges were the small and imbalanced dataset. Enlarging the minority classes, incorporating more oral mucosal lesion diagnoses, employing transfer learning and cross-validation might be included in future works to optimize the image classification model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过临床摄影成像鉴别诊断口腔黏膜病变的深度学习系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Dental Sciences
Journal of Dental Sciences 医学-牙科与口腔外科
CiteScore
5.10
自引率
14.30%
发文量
348
审稿时长
6 days
期刊介绍: he Journal of Dental Sciences (JDS), published quarterly, is the official and open access publication of the Association for Dental Sciences of the Republic of China (ADS-ROC). The precedent journal of the JDS is the Chinese Dental Journal (CDJ) which had already been covered by MEDLINE in 1988. As the CDJ continued to prove its importance in the region, the ADS-ROC decided to move to the international community by publishing an English journal. Hence, the birth of the JDS in 2006. The JDS is indexed in the SCI Expanded since 2008. It is also indexed in Scopus, and EMCare, ScienceDirect, SIIC Data Bases. The topics covered by the JDS include all fields of basic and clinical dentistry. Some manuscripts focusing on the study of certain endemic diseases such as dental caries and periodontal diseases in particular regions of any country as well as oral pre-cancers, oral cancers, and oral submucous fibrosis related to betel nut chewing habit are also considered for publication. Besides, the JDS also publishes articles about the efficacy of a new treatment modality on oral verrucous hyperplasia or early oral squamous cell carcinoma.
期刊最新文献
Editorial Board Comparison of computed tomographic findings for radiolucent lesions of the mandibular ameloblastoma, odontogenic keratocyst, dentigerous cyst, and simple bone cyst Periodontal ligament fibroblasts utilize isoprenoid intermediate farnesyl diphosphate for maintaining osteo/cementogenic differentiation abilities Relationship between oral health literacy and changes in self-assessment of oral health during COVID-19 Relationships between orofacial pain and sleep: Analysis of UK biobank and genome-wide association studies data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1