Evaluation of tumor-colonizing Salmonella strains using the chick chorioallantoic membrane model.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY mBio Pub Date : 2025-03-12 Epub Date: 2025-01-28 DOI:10.1128/mbio.03590-24
Khin K Z Mon, Linda J Kenney
{"title":"Evaluation of tumor-colonizing <i>Salmonella</i> strains using the chick chorioallantoic membrane model.","authors":"Khin K Z Mon, Linda J Kenney","doi":"10.1128/mbio.03590-24","DOIUrl":null,"url":null,"abstract":"<p><p>The chick embryo chorioallantoic membrane (CAM) tumor model is a valuable preclinical model for studying the tumor-colonizing process of <i>Salmonella enterica</i> serovar Typhimurium. It offers advantages such as cost-effectiveness, rapid turnaround, reduced engraftment issues, and ease of observation. In this study, we explored and validated the applicability of the partially immune-deficient CAM tumor model. Herein, we demonstrate that <i>Salmonella</i> preferentially colonizes tumors and directly causes tumor cell death. Bacterial migration, tumor colonization, and intra-tumor distribution did not require flagellar-mediated motility. The vast majority of <i>Salmonella</i> that colonized the CAM tumor were extracellular. Thus, tumor invasion was independent of both <i>Salmonella</i> pathogenicity island-1-encoded and <i>Salmonella</i> pathogenicity island-2-encoded type III secretion systems. Surprisingly, the extracellular residence of <i>Salmonella</i> on CAM tumors did not require biofilm formation. We evaluated our wild-type parental strain compared to the attenuated clinical strain VNP20009 and discovered a reduced tumor colonization capability of VNP20009. The inability to effectively colonize CAM tumors potentially explains the reduced anti-tumor efficacy of VNP20009. Our work establishes the xenograft CAM model as an informative and predictive screening platform for studying tumor-colonizing <i>Salmonella</i>.IMPORTANCECancer has a major impact on society, as it poses a significant health burden to human populations worldwide. <i>Salmonella</i> Typhimurium has demonstrated promise in cancer treatment by exerting direct tumoricidal effects and enhancing host-mediated anti-tumor immunity in xenograft mouse studies. A general understanding of its pathogenesis and the relative ease of genetic manipulation support the development of attenuated strains for therapeutic use. Alternative <i>in ovo</i> models, such as the chorioallantoic membrane tumor model, present a suitable screening platform to accelerate the development of therapeutic strains. It allows for rapid evaluation of <i>Salmonella</i> strains to assess their efficacy and potential as oncolytic agents. The present study establishes that the <i>in ovo</i> tumor model can be utilized as a preclinical tool for evaluating oncolytic <i>Salmonella</i>, bridging the gap between <i>in vitro</i> and <i>in vivo</i> screening.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0359024"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03590-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The chick embryo chorioallantoic membrane (CAM) tumor model is a valuable preclinical model for studying the tumor-colonizing process of Salmonella enterica serovar Typhimurium. It offers advantages such as cost-effectiveness, rapid turnaround, reduced engraftment issues, and ease of observation. In this study, we explored and validated the applicability of the partially immune-deficient CAM tumor model. Herein, we demonstrate that Salmonella preferentially colonizes tumors and directly causes tumor cell death. Bacterial migration, tumor colonization, and intra-tumor distribution did not require flagellar-mediated motility. The vast majority of Salmonella that colonized the CAM tumor were extracellular. Thus, tumor invasion was independent of both Salmonella pathogenicity island-1-encoded and Salmonella pathogenicity island-2-encoded type III secretion systems. Surprisingly, the extracellular residence of Salmonella on CAM tumors did not require biofilm formation. We evaluated our wild-type parental strain compared to the attenuated clinical strain VNP20009 and discovered a reduced tumor colonization capability of VNP20009. The inability to effectively colonize CAM tumors potentially explains the reduced anti-tumor efficacy of VNP20009. Our work establishes the xenograft CAM model as an informative and predictive screening platform for studying tumor-colonizing Salmonella.IMPORTANCECancer has a major impact on society, as it poses a significant health burden to human populations worldwide. Salmonella Typhimurium has demonstrated promise in cancer treatment by exerting direct tumoricidal effects and enhancing host-mediated anti-tumor immunity in xenograft mouse studies. A general understanding of its pathogenesis and the relative ease of genetic manipulation support the development of attenuated strains for therapeutic use. Alternative in ovo models, such as the chorioallantoic membrane tumor model, present a suitable screening platform to accelerate the development of therapeutic strains. It allows for rapid evaluation of Salmonella strains to assess their efficacy and potential as oncolytic agents. The present study establishes that the in ovo tumor model can be utilized as a preclinical tool for evaluating oncolytic Salmonella, bridging the gap between in vitro and in vivo screening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
期刊最新文献
Temporal expression classes and functions of vaccinia virus and mpox (monkeypox) virus genes. Adaptive evolution of sesquiterpene deoxyphomenone in mycoparasitism by Hansfordia pulvinata associated with horizontal gene transfer from Aspergillus species. Defense arsenal of the strict anaerobe Clostridioides difficile against reactive oxygen species encountered during its infection cycle. Insights into the physiological and metabolic features of Thalassobacterium, a novel genus of Verrucomicrobiota with the potential to drive the carbon cycle. Lactate dehydrogenase is the Achilles' heel of Lyme disease bacterium Borreliella burgdorferi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1