首页 > 最新文献

mBio最新文献

英文 中文
Insights into the physiological and metabolic features of Thalassobacterium, a novel genus of Verrucomicrobiota with the potential to drive the carbon cycle.
IF 5.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-20 DOI: 10.1128/mbio.00305-25
Xin-Yun Tan, Xin-Jiang Liu, De-Chen Lu, Yu-Qi Ye, Xin-Yu Liu, Fan Yu, Hui Yang, Fan Li, Zong-Jun Du, Meng-Qi Ye

Verrucomicrobiota are widely distributed across various habitats but are difficult to culture. Some previous multiomics analyses reported that Verrucomicrobiota have outstanding metabolic capacity for organic matter degradation and are able to degrade and synthesize polysaccharides, two activities that could contribute significantly to the Earth's carbon cycle. Here, we isolated from marine sediment two novel strains, Thalassobacterium maritimum SDUM461003T and Thalassobacterium sedimentorum SDUM461004T, that represent a new genus of the difficult-to-culture phylum Verrucomicrobiota. Genome analysis, functional annotation, and experimental verification revealed that these two strains degrade polysaccharides and antibiotics, including some complex sulfated polysaccharides (SPs), primarily fucoidan and chondroitin sulfate. Moreover, electron microscopy images revealed that these bacteria can synthesize and store large amounts of glycogen. These polysaccharide degradation and synthesis capacities also exist but differ under nitrogen-deficient conditions, indicating that Verrucomicrobiota may have the potential to maintain their normal metabolism by nitrogen fixation under aerobic conditions. Given that polysaccharides and their degradation products are particularly crucial carbon sources for marine microorganisms, Verrucomicrobiota are thought to be important contributors to biogeochemical cycling in the ocean.

Importance: Verrucomicrobiota are widely distributed and able to utilize a variety of difficult-to-biodegrade polysaccharides, which have a significant impact on the marine carbon cycle. However, there are not enough pure culture strains of Verrucomicrobiota, as hard-to-cultivate bacteria, for us to study. Here, our study reports a new genus in the phylum Verrucomicrobiota and investigates their ability to degrade and synthesize a variety of polysaccharides as well as the mechanism of utilizing difficult-to-degrade polysaccharides. We also explored their special performance on carbon utilization in marine nitrogen-deficient environments. This contributes to deepening our understanding of the involvement of marine microorganisms in the marine carbon cycle.

{"title":"Insights into the physiological and metabolic features of <i>Thalassobacterium</i>, a novel genus of <i>Verrucomicrobiota</i> with the potential to drive the carbon cycle.","authors":"Xin-Yun Tan, Xin-Jiang Liu, De-Chen Lu, Yu-Qi Ye, Xin-Yu Liu, Fan Yu, Hui Yang, Fan Li, Zong-Jun Du, Meng-Qi Ye","doi":"10.1128/mbio.00305-25","DOIUrl":"https://doi.org/10.1128/mbio.00305-25","url":null,"abstract":"<p><p><i>Verrucomicrobiota</i> are widely distributed across various habitats but are difficult to culture. Some previous multiomics analyses reported that <i>Verrucomicrobiota</i> have outstanding metabolic capacity for organic matter degradation and are able to degrade and synthesize polysaccharides, two activities that could contribute significantly to the Earth's carbon cycle. Here, we isolated from marine sediment two novel strains, <i>Thalassobacterium maritimum</i> SDUM461003<sup>T</sup> and <i>Thalassobacterium sedimentorum</i> SDUM461004<sup>T</sup>, that represent a new genus of the difficult-to-culture phylum <i>Verrucomicrobiota</i>. Genome analysis, functional annotation, and experimental verification revealed that these two strains degrade polysaccharides and antibiotics, including some complex sulfated polysaccharides (SPs), primarily fucoidan and chondroitin sulfate. Moreover, electron microscopy images revealed that these bacteria can synthesize and store large amounts of glycogen. These polysaccharide degradation and synthesis capacities also exist but differ under nitrogen-deficient conditions, indicating that <i>Verrucomicrobiota</i> may have the potential to maintain their normal metabolism by nitrogen fixation under aerobic conditions. Given that polysaccharides and their degradation products are particularly crucial carbon sources for marine microorganisms, <i>Verrucomicrobiota</i> are thought to be important contributors to biogeochemical cycling in the ocean.</p><p><strong>Importance: </strong><i>Verrucomicrobiota</i> are widely distributed and able to utilize a variety of difficult-to-biodegrade polysaccharides, which have a significant impact on the marine carbon cycle. However, there are not enough pure culture strains of <i>Verrucomicrobiota</i>, as hard-to-cultivate bacteria, for us to study. Here, our study reports a new genus in the phylum <i>Verrucomicrobiota</i> and investigates their ability to degrade and synthesize a variety of polysaccharides as well as the mechanism of utilizing difficult-to-degrade polysaccharides. We also explored their special performance on carbon utilization in marine nitrogen-deficient environments. This contributes to deepening our understanding of the involvement of marine microorganisms in the marine carbon cycle.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0030525"},"PeriodicalIF":5.1,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal expression classes and functions of vaccinia virus and mpox (monkeypox) virus genes.
IF 5.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-20 DOI: 10.1128/mbio.03809-24
Yining Deng, Santiago Navarro-Forero, Zhilong Yang

Poxviruses comprise pathogens that are highly pathogenic to humans and animals, causing diseases such as smallpox and mpox (formerly monkeypox). The family also contains members developed as vaccine vectors and oncolytic agents to fight other diseases. Vaccinia virus is the prototype poxvirus and the vaccine used to eradicate smallpox. Poxvirus genes follow a cascade temporal expression pattern, categorized into early, intermediate, and late stages using distinct transcription factors. This review comprehensively summarized the temporal expression classification of over 200 vaccinia virus genes. The relationships between expression classes and functions, as well as different branches of immune responses, were discussed. Based on the vaccinia virus orthologs, we classified the temporal expression classes of all the mpox virus genes, including a few that were not previously annotated with orthologs in vaccinia viruses. Additionally, we reviewed the functions of all vaccinia virus genes based on the up-to-date published papers. This review provides a readily usable resource for researchers working on poxvirus biology, medical countermeasures, and poxvirus utility development.

{"title":"Temporal expression classes and functions of vaccinia virus and mpox (monkeypox) virus genes.","authors":"Yining Deng, Santiago Navarro-Forero, Zhilong Yang","doi":"10.1128/mbio.03809-24","DOIUrl":"https://doi.org/10.1128/mbio.03809-24","url":null,"abstract":"<p><p>Poxviruses comprise pathogens that are highly pathogenic to humans and animals, causing diseases such as smallpox and mpox (formerly monkeypox). The family also contains members developed as vaccine vectors and oncolytic agents to fight other diseases. Vaccinia virus is the prototype poxvirus and the vaccine used to eradicate smallpox. Poxvirus genes follow a cascade temporal expression pattern, categorized into early, intermediate, and late stages using distinct transcription factors. This review comprehensively summarized the temporal expression classification of over 200 vaccinia virus genes. The relationships between expression classes and functions, as well as different branches of immune responses, were discussed. Based on the vaccinia virus orthologs, we classified the temporal expression classes of all the mpox virus genes, including a few that were not previously annotated with orthologs in vaccinia viruses. Additionally, we reviewed the functions of all vaccinia virus genes based on the up-to-date published papers. This review provides a readily usable resource for researchers working on poxvirus biology, medical countermeasures, and poxvirus utility development.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0380924"},"PeriodicalIF":5.1,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactate dehydrogenase is the Achilles' heel of Lyme disease bacterium Borreliella burgdorferi.
IF 5.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-20 DOI: 10.1128/mbio.03728-24
Ching Wooen Sze, Michael J Lynch, Kai Zhang, David B Neau, Steven E Ealick, Brian R Crane, Chunhao Li

As a zoonotic pathogen, the Lyme disease bacterium Borreliella burgdorferi has evolved unique metabolic pathways, some of which are specific and essential for its survival and thus present as ideal targets for developing new therapeutics. B. burgdorferi dispenses with the use of thiamin as a cofactor and relies on lactate dehydrogenase (BbLDH) to convert pyruvate to lactate for balancing NADH/NAD+ ratios. This report first demonstrates that BbLDH is a canonical LDH with some unique biochemical and structural features. A loss-of-function study then reveals that BbLDH is essential for B. burgdorferi survival and infectivity, highlighting its therapeutic potential. Drug screening identifies four previously unknown LDH inhibitors with minimal cytotoxicity, two of which inhibit B. burgdorferi growth. This study provides mechanistic insights into the function of BbLDH in the pathophysiology of B. burgdorferi and lays the groundwork for developing genus-specific metabolic inhibitors against B. burgdorferi and potentially other tick-borne pathogens as well.

Importance: Lyme disease (LD) is the most commonly reported tick-borne illness in the U.S. and Europe, and its geographic distribution is continuously expanding worldwide. Though early LD can be treated with antibiotics, chronic LD is recalcitrant to antibiotic treatments and thus requires multiple courses of antibiotic therapy. Currently, there are no human vaccines nor prophylactic antibiotics to prevent LD. As the causative agent of LD, Borreliella burgdorferi has evolved unique metabolic pathways, some of which are specific and essential for its survival and thus present as ideal targets for developing new therapeutics. By using an approach of genetics, biochemistry, structural biology, drug screening, and animal models, this report provides evidence that lactate dehydrogenase can be a potential target for developing genus-specific metabolic inhibitors against B. burgdorferi and potentially other tick-borne pathogens as well.

{"title":"Lactate dehydrogenase is the Achilles' heel of Lyme disease bacterium <i>Borreliella burgdorferi</i>.","authors":"Ching Wooen Sze, Michael J Lynch, Kai Zhang, David B Neau, Steven E Ealick, Brian R Crane, Chunhao Li","doi":"10.1128/mbio.03728-24","DOIUrl":"https://doi.org/10.1128/mbio.03728-24","url":null,"abstract":"<p><p>As a zoonotic pathogen, the Lyme disease bacterium <i>Borreliella burgdorferi</i> has evolved unique metabolic pathways, some of which are specific and essential for its survival and thus present as ideal targets for developing new therapeutics. <i>B. burgdorferi</i> dispenses with the use of thiamin as a cofactor and relies on lactate dehydrogenase (BbLDH) to convert pyruvate to lactate for balancing NADH/NAD<sup>+</sup> ratios. This report first demonstrates that BbLDH is a canonical LDH with some unique biochemical and structural features. A loss-of-function study then reveals that BbLDH is essential for <i>B. burgdorferi</i> survival and infectivity, highlighting its therapeutic potential. Drug screening identifies four previously unknown LDH inhibitors with minimal cytotoxicity, two of which inhibit <i>B. burgdorferi</i> growth. This study provides mechanistic insights into the function of BbLDH in the pathophysiology of <i>B. burgdorferi</i> and lays the groundwork for developing genus-specific metabolic inhibitors against <i>B. burgdorferi</i> and potentially other tick-borne pathogens as well.</p><p><strong>Importance: </strong>Lyme disease (LD) is the most commonly reported tick-borne illness in the U.S. and Europe, and its geographic distribution is continuously expanding worldwide. Though early LD can be treated with antibiotics, chronic LD is recalcitrant to antibiotic treatments and thus requires multiple courses of antibiotic therapy. Currently, there are no human vaccines nor prophylactic antibiotics to prevent LD. As the causative agent of LD, <i>Borreliella burgdorferi</i> has evolved unique metabolic pathways, some of which are specific and essential for its survival and thus present as ideal targets for developing new therapeutics. By using an approach of genetics, biochemistry, structural biology, drug screening, and animal models, this report provides evidence that lactate dehydrogenase can be a potential target for developing genus-specific metabolic inhibitors against <i>B. burgdorferi</i> and potentially other tick-borne pathogens as well.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0372824"},"PeriodicalIF":5.1,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defense arsenal of the strict anaerobe Clostridioides difficile against reactive oxygen species encountered during its infection cycle.
IF 5.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-20 DOI: 10.1128/mbio.03753-24
Aurélie Lotoux, Léo Caulat, Catarina Martins Alves, Carolina Alves Feliciano, Claire Morvan, Filipe Folgosa, Isabelle Martin-Verstraete

Clostridioides difficile, a strict anaerobe, is the major cause of antibiotic-associated diarrhea. This enteropathogen must adapt to oxidative stress mediated by reactive oxygen species (ROS), notably those released by the neutrophils and macrophages recruited to the site of infection or those endogenously produced upon high oxygen (O2) exposure. C. difficile uses a superoxide reductase, Sor, and several peroxidases to detoxify ROS. We showed that Sor has a superoxide reductase activity in vitro and protects the bacterium from exposure to menadione, a superoxide donor. After confirming the peroxidase activity of the rubrerythrin, Rbr, we showed that this enzyme together with the peroxiredoxin, Bcp, plays a central role in the detoxification of H2O2 and promotes the survival of C. difficile in the presence of not only H2O2 but also air or 4% O2. Under high O2 concentrations encountered in the gastrointestinal tract, the bacterium generated endogenous H2O2. The two O2 reductases, RevRbr2 and FdpF, have also a peroxidase activity and participate in H2O2 resistance. The CD0828 gene, which also contributes to H2O2 protection, forms an operon with rbr, sor, and perR encoding a H2O2-sensing repressor. The expression of the genes encoding the ROS reductases and the CD0828 protein was induced upon exposure to either H2O2 or air. We showed that the induction of the rbr operon is mediated not only by PerR but also by OseR, a recently identified O2-responsive regulator of C. difficile, and indirectly by σB, the sigma factor of the stress response, whereas the expression of bcp is only controlled by σB.

Importance: ROS plays a fundamental role in intestinal homeostasis, limiting the proliferation of pathogenic bacteria. Clostridioides difficile is an important enteropathogen that induces an intense immune response, characterized by the massive recruitment of immune cells responsible for secreting ROS, mainly H2O2 and superoxide. We showed in this work that ROS exposure leads to the production of an armada of enzymes involved in ROS detoxification. This includes a superoxide reductase and four peroxidases, Rbr, Bcp, revRbr2, and FdpF. These enzymes likely contribute to the survival of vegetative cells of C. difficile in the colon during the host immune response. Distinct regulations are also observed for the genes encoding the ROS detoxification enzymes allowing a fine tuning of the adaptive response to ROS exposure. Understanding the mechanisms of ROS protection during infection could shed light on how C. difficile survives under conditions of an exacerbated inflammatory response.

{"title":"Defense arsenal of the strict anaerobe <i>Clostridioides difficile</i> against reactive oxygen species encountered during its infection cycle.","authors":"Aurélie Lotoux, Léo Caulat, Catarina Martins Alves, Carolina Alves Feliciano, Claire Morvan, Filipe Folgosa, Isabelle Martin-Verstraete","doi":"10.1128/mbio.03753-24","DOIUrl":"https://doi.org/10.1128/mbio.03753-24","url":null,"abstract":"<p><p><i>Clostridioides difficile</i>, a strict anaerobe, is the major cause of antibiotic-associated diarrhea. This enteropathogen must adapt to oxidative stress mediated by reactive oxygen species (ROS), notably those released by the neutrophils and macrophages recruited to the site of infection or those endogenously produced upon high oxygen (O<sub>2</sub>) exposure. <i>C. difficile</i> uses a superoxide reductase, Sor, and several peroxidases to detoxify ROS. We showed that Sor has a superoxide reductase activity <i>in vitro</i> and protects the bacterium from exposure to menadione, a superoxide donor. After confirming the peroxidase activity of the rubrerythrin, Rbr, we showed that this enzyme together with the peroxiredoxin, Bcp, plays a central role in the detoxification of H<sub>2</sub>O<sub>2</sub> and promotes the survival of <i>C. difficile</i> in the presence of not only H<sub>2</sub>O<sub>2</sub> but also air or 4% O<sub>2</sub>. Under high O<sub>2</sub> concentrations encountered in the gastrointestinal tract, the bacterium generated endogenous H<sub>2</sub>O<sub>2</sub>. The two O<sub>2</sub> reductases, RevRbr2 and FdpF, have also a peroxidase activity and participate in H<sub>2</sub>O<sub>2</sub> resistance. The <i>CD0828</i> gene, which also contributes to H<sub>2</sub>O<sub>2</sub> protection, forms an operon with <i>rbr</i>, <i>sor</i>, and <i>perR</i> encoding a H<sub>2</sub>O<sub>2</sub>-sensing repressor. The expression of the genes encoding the ROS reductases and the CD0828 protein was induced upon exposure to either H<sub>2</sub>O<sub>2</sub> or air. We showed that the induction of the <i>rbr</i> operon is mediated not only by PerR but also by OseR, a recently identified O<sub>2</sub>-responsive regulator of <i>C. difficile</i>, and indirectly by σ<sup>B</sup>, the sigma factor of the stress response, whereas the expression of <i>bcp</i> is only controlled by σ<sup>B</sup>.</p><p><strong>Importance: </strong>ROS plays a fundamental role in intestinal homeostasis, limiting the proliferation of pathogenic bacteria. <i>Clostridioides difficile</i> is an important enteropathogen that induces an intense immune response, characterized by the massive recruitment of immune cells responsible for secreting ROS, mainly H<sub>2</sub>O<sub>2</sub> and superoxide. We showed in this work that ROS exposure leads to the production of an armada of enzymes involved in ROS detoxification. This includes a superoxide reductase and four peroxidases, Rbr, Bcp, revRbr2, and FdpF. These enzymes likely contribute to the survival of vegetative cells of <i>C. difficile</i> in the colon during the host immune response. Distinct regulations are also observed for the genes encoding the ROS detoxification enzymes allowing a fine tuning of the adaptive response to ROS exposure. Understanding the mechanisms of ROS protection during infection could shed light on how <i>C. difficile</i> survives under conditions of an exacerbated inflammatory response.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0375324"},"PeriodicalIF":5.1,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive evolution of sesquiterpene deoxyphomenone in mycoparasitism by Hansfordia pulvinata associated with horizontal gene transfer from Aspergillus species.
IF 5.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-20 DOI: 10.1128/mbio.04007-24
Kazuya Maeda, Takuya Sumita, Oumi Nishi, Hirotoshi Sushida, Yumiko Higashi, Hiroyuki Nakagawa, Tomoko Suzuki, Eishin Iwao, Much Zaenal Fanani, Yoshiaki Nishiya, Yuichiro Iida

Leaf mold caused by the ascomycete fungus Cladosporium fulvum is a devastating disease of tomato plants. The mycoparasitic fungus Hansfordia pulvinata is an effective biocontrol agent that parasitizes C. fulvum hyphae on leaves and secretes 13-deoxyphomenone, an eremophilane-type sesquiterpene, which was also identified as a sporulation-inducing factor in Aspergillus oryzae. Here, we identified deoxyphomenone biosynthesis (DPH) gene clusters conserved in both H. pulvinata and Aspergillus section Flavi, including A. oryzae and A. flavus. Functional disruption of DPH1 orthologous genes encoding sesquiterpene cyclase in H. pulvinata, A. oryzae, and its close relative A. flavus revealed that deoxyphomenone in H. pulvinata had exogenic antifungal activity against C. fulvum and controlled endogenic sporulation in Aspergillus species. Complete DPH clusters, highly similar to those in H. pulvinata, were exclusive to Aspergillus section Flavi, while species in other Aspergillus sections contained fragmented DPH clusters. A comparative genomics analysis revealed that these DPH gene clusters share a common origin and are horizontally transferred from an ancestor of Aspergillus to H. pulvinata. Our results suggest that after horizontal transfer, H. pulvinata maintained the DPH cluster as the inhibitory effect of deoxyphomenone on spore germination and mycelial growth contributed to its mycoparasitism on the host fungus C. fulvum.

Importance: Tomato leaf mold disease caused by C. fulvum poses a significant economic threat to tomato production globally. Breeders have developed tomato cultivars with Cf resistance genes. C. fulvum frequently evolves new races that overcome these genetic defenses, complicating control efforts. Additionally, the pathogen has developed resistance to chemical fungicides, prompting the need for sustainable alternatives like biocontrol agents. The mycoparasitic fungus H. pulvinata is crucial as an effective agent against C. fulvum. Clarifying the mechanism of mycoparasitism is significant, as it enhances its application as a biocontrol agent against plant pathogens. This study revealed how H. pulvinata produces deoxyphomenone, an antifungal compound, through horizontal gene transfer from Aspergillus species. It is hypothesized that mycoparasitism could be one of the mechanisms that facilitated horizontal gene transfer between fungi. These insights facilitate the development of eco-friendly, sustainable agricultural practices by reducing dependence on chemical fungicides and promoting natural pathogen control methods.

{"title":"Adaptive evolution of sesquiterpene deoxyphomenone in mycoparasitism by <i>Hansfordia pulvinata</i> associated with horizontal gene transfer from <i>Aspergillus</i> species.","authors":"Kazuya Maeda, Takuya Sumita, Oumi Nishi, Hirotoshi Sushida, Yumiko Higashi, Hiroyuki Nakagawa, Tomoko Suzuki, Eishin Iwao, Much Zaenal Fanani, Yoshiaki Nishiya, Yuichiro Iida","doi":"10.1128/mbio.04007-24","DOIUrl":"https://doi.org/10.1128/mbio.04007-24","url":null,"abstract":"<p><p>Leaf mold caused by the ascomycete fungus <i>Cladosporium fulvum</i> is a devastating disease of tomato plants. The mycoparasitic fungus <i>Hansfordia pulvinata</i> is an effective biocontrol agent that parasitizes <i>C. fulvum</i> hyphae on leaves and secretes 13-deoxyphomenone, an eremophilane-type sesquiterpene, which was also identified as a sporulation-inducing factor in <i>Aspergillus oryzae</i>. Here, we identified deoxyphomenone biosynthesis (<i>DPH</i>) gene clusters conserved in both <i>H. pulvinata</i> and <i>Aspergillus</i> section <i>Flavi</i>, including <i>A. oryzae</i> and <i>A. flavus</i>. Functional disruption of <i>DPH1</i> orthologous genes encoding sesquiterpene cyclase in <i>H. pulvinata</i>, <i>A. oryzae</i>, and its close relative <i>A. flavus</i> revealed that deoxyphomenone in <i>H. pulvinata</i> had exogenic antifungal activity against <i>C. fulvum</i> and controlled endogenic sporulation in <i>Aspergillus</i> species. Complete <i>DPH</i> clusters, highly similar to those in <i>H. pulvinata</i>, were exclusive to <i>Aspergillus</i> section <i>Flavi</i>, while species in other <i>Aspergillus</i> sections contained fragmented <i>DPH</i> clusters. A comparative genomics analysis revealed that these <i>DPH</i> gene clusters share a common origin and are horizontally transferred from an ancestor of <i>Aspergillus</i> to <i>H. pulvinata</i>. Our results suggest that after horizontal transfer, <i>H. pulvinata</i> maintained the <i>DPH</i> cluster as the inhibitory effect of deoxyphomenone on spore germination and mycelial growth contributed to its mycoparasitism on the host fungus <i>C. fulvum</i>.</p><p><strong>Importance: </strong>Tomato leaf mold disease caused by <i>C. fulvum</i> poses a significant economic threat to tomato production globally. Breeders have developed tomato cultivars with <i>Cf</i> resistance genes. <i>C. fulvum</i> frequently evolves new races that overcome these genetic defenses, complicating control efforts. Additionally, the pathogen has developed resistance to chemical fungicides, prompting the need for sustainable alternatives like biocontrol agents. The mycoparasitic fungus <i>H. pulvinata</i> is crucial as an effective agent against <i>C. fulvum</i>. Clarifying the mechanism of mycoparasitism is significant, as it enhances its application as a biocontrol agent against plant pathogens. This study revealed how <i>H. pulvinata</i> produces deoxyphomenone, an antifungal compound, through horizontal gene transfer from <i>Aspergillus</i> species. It is hypothesized that mycoparasitism could be one of the mechanisms that facilitated horizontal gene transfer between fungi. These insights facilitate the development of eco-friendly, sustainable agricultural practices by reducing dependence on chemical fungicides and promoting natural pathogen control methods.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0400724"},"PeriodicalIF":5.1,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear warfare: pathogen manipulation of the nuclear pore complex and nuclear functions.
IF 5.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-20 DOI: 10.1128/mbio.01940-24
Brianna Steiert, Mary M Weber

Viruses and bacteria exploit the nuclear pore complex (NPC) and host nuclear functions to bypass cellular barriers and manipulate essential processes. Viruses frequently engage directly with NPC components, such as nucleoporins, to enable genome import and evade immune defenses. In contrast, bacterial pathogens rely on secreted effector proteins to disrupt nuclear transport and reprogram host transcription. These strategies reflect a remarkable evolutionary convergence, with both types of pathogens targeting the NPC and nuclear functions to promote infection. This minireview explores the overlapping and unique mechanisms by which pathogens hijack the host nucleus, shedding light on their roles in disease and potential avenues for therapeutic intervention.

{"title":"Nuclear warfare: pathogen manipulation of the nuclear pore complex and nuclear functions.","authors":"Brianna Steiert, Mary M Weber","doi":"10.1128/mbio.01940-24","DOIUrl":"https://doi.org/10.1128/mbio.01940-24","url":null,"abstract":"<p><p>Viruses and bacteria exploit the nuclear pore complex (NPC) and host nuclear functions to bypass cellular barriers and manipulate essential processes. Viruses frequently engage directly with NPC components, such as nucleoporins, to enable genome import and evade immune defenses. In contrast, bacterial pathogens rely on secreted effector proteins to disrupt nuclear transport and reprogram host transcription. These strategies reflect a remarkable evolutionary convergence, with both types of pathogens targeting the NPC and nuclear functions to promote infection. This minireview explores the overlapping and unique mechanisms by which pathogens hijack the host nucleus, shedding light on their roles in disease and potential avenues for therapeutic intervention.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0194024"},"PeriodicalIF":5.1,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Penton blooming, a conserved mechanism of genome delivery used by disparate microviruses. Penton blooming,一种不同微小病毒使用的基因组传递保守机制。
IF 5.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-19 DOI: 10.1128/mbio.03713-24
Pavol Bardy, Conor I W MacDonald, Paul C Kirchberger, Huw T Jenkins, Tibor Botka, Lewis Byrom, Nawshin T B Alim, Daouda A K Traore, Hannah C Koenig, Tristan R Nicholas, Maria Chechik, Samuel J Hart, Johan P Turkenburg, James N Blaza, J Thomas Beatty, Paul C M Fogg, Alfred A Antson

Microviruses are single-stranded DNA viruses infecting bacteria, characterized by T = 1 shells made of single jelly-roll capsid proteins. To understand how microviruses infect their host cells, we have isolated and studied an unusually large microvirus, Ebor. Ebor belongs to the proposed "Tainavirinae" subfamily of Microviridae and infects the model Alphaproteobacterium Rhodobacter capsulatus. Using cryogenic electron microscopy, we show that the enlarged capsid of Ebor is the result of an extended C-terminus of the major capsid protein. The extra packaging space accommodates genes encoding a lytic enzyme and putative methylase, both absent in microviruses with shorter genomes. The capsid is decorated with protrusions at its 3-fold axes, which we show to recognize lipopolysaccharides on the host surface. Cryogenic electron tomography shows that during infection, Ebor attaches to the host cell via five such protrusions. This attachment brings a single pentameric capsomer into close contact with the cell membrane, creating a special vertex through which the genome is ejected. Both subtomogram averaging and single particle analysis identified two intermediates of capsid opening, showing that the interacting penton opens from its center via the separation of individual capsomer subunits. Structural comparison with the model Bullavirinae phage phiX174 suggests that this genome delivery mechanism may be widely present across Microviridae.

Importance: Tailless Microviridae bacteriophages are major components of the global virosphere. Notably, microviruses are prominent members of the mammalian gut virome, and certain compositions have been linked to serious health disorders; however, a molecular understanding of how they initiate infection of their host remains poorly characterized. We demonstrate that trimeric protrusions located at the corners of a single microvirus capsomer mediate host cell attachment. This interaction triggers opening of the capsomer, driven by separation of subunits from its center, much like flower petals open during blooming. This extensive opening explains how the genome translocation apparatus, along with the genome itself, is able to exit the capsid. "Penton blooming" likely represents a conserved mechanism shared by diverse viruses possessing similar capsid architectures.

{"title":"Penton blooming, a conserved mechanism of genome delivery used by disparate microviruses.","authors":"Pavol Bardy, Conor I W MacDonald, Paul C Kirchberger, Huw T Jenkins, Tibor Botka, Lewis Byrom, Nawshin T B Alim, Daouda A K Traore, Hannah C Koenig, Tristan R Nicholas, Maria Chechik, Samuel J Hart, Johan P Turkenburg, James N Blaza, J Thomas Beatty, Paul C M Fogg, Alfred A Antson","doi":"10.1128/mbio.03713-24","DOIUrl":"https://doi.org/10.1128/mbio.03713-24","url":null,"abstract":"<p><p>Microviruses are single-stranded DNA viruses infecting bacteria, characterized by T = 1 shells made of single jelly-roll capsid proteins. To understand how microviruses infect their host cells, we have isolated and studied an unusually large microvirus, Ebor. Ebor belongs to the proposed \"Tainavirinae\" subfamily of <i>Microviridae</i> and infects the model Alphaproteobacterium <i>Rhodobacter capsulatus</i>. Using cryogenic electron microscopy, we show that the enlarged capsid of Ebor is the result of an extended C-terminus of the major capsid protein. The extra packaging space accommodates genes encoding a lytic enzyme and putative methylase, both absent in microviruses with shorter genomes. The capsid is decorated with protrusions at its 3-fold axes, which we show to recognize lipopolysaccharides on the host surface. Cryogenic electron tomography shows that during infection, Ebor attaches to the host cell via five such protrusions. This attachment brings a single pentameric capsomer into close contact with the cell membrane, creating a special vertex through which the genome is ejected. Both subtomogram averaging and single particle analysis identified two intermediates of capsid opening, showing that the interacting penton opens from its center via the separation of individual capsomer subunits. Structural comparison with the model <i>Bullavirinae</i> phage phiX174 suggests that this genome delivery mechanism may be widely present across <i>Microviridae</i>.</p><p><strong>Importance: </strong>Tailless <i>Microviridae</i> bacteriophages are major components of the global virosphere. Notably, microviruses are prominent members of the mammalian gut virome, and certain compositions have been linked to serious health disorders; however, a molecular understanding of how they initiate infection of their host remains poorly characterized. We demonstrate that trimeric protrusions located at the corners of a single microvirus capsomer mediate host cell attachment. This interaction triggers opening of the capsomer, driven by separation of subunits from its center, much like flower petals open during blooming. This extensive opening explains how the genome translocation apparatus, along with the genome itself, is able to exit the capsid. \"Penton blooming\" likely represents a conserved mechanism shared by diverse viruses possessing similar capsid architectures.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0371324"},"PeriodicalIF":5.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bordetella adenylate cyclase toxin elicits chromatin remodeling and transcriptional reprogramming that blocks differentiation of monocytes into macrophages.
IF 5.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-19 DOI: 10.1128/mbio.00138-25
Jawid Nazir Ahmad, Martin Modrak, Marketa Fajfrova, Blanca Martin-Borja Sotoca, Oldrich Benada, Peter Sebo

Bordetella pertussis infects human upper airways and deploys an array of immunosuppressive virulence factors, among which the adenylate cyclase toxin (CyaA) plays a prominent role in disarming host phagocytes. CyaA binds the complement receptor-3 (CR3 aka αMβ2 integrin CD11b/CD18 or Mac-1) of myeloid cells and delivers into their cytosol an adenylyl cyclase enzyme that hijacks cellular signaling through unregulated conversion of cytosolic ATP to cAMP. We found that the action of as little CyaA as 22 pM (4 ng/mL) blocks macrophage colony-stimulating factor (M-CSF)-driven transition of migratory human CD14+ monocytes into macrophages. Global transcriptional profiling (RNAseq) revealed that exposure of monocytes to 22 pM CyaA for 40 hours in culture with 20 ng/mL of M-CSF led to upregulation of genes that exert negative control of monocyte to macrophage differentiation (e.g., SERPINB2, DLL1, and CSNK1E). The sustained CyaA action yielded downregulation of numerous genes involved in processes crucial for host defense, such as myeloid cell differentiation, chemotaxis of inflammatory cells, antigen presentation, phagocytosis, and bactericidal activities. CyaA-elicited signaling also promoted deacetylation and trimethylation of lysines 9 and 27 of histone 3 (H3K9me3 and H3K27me3) and triggered the formation of transcriptionally repressive heterochromatin patches in the nuclei of CyaA-exposed monocytes. These effects were partly reversed by the G9a methyltransferase inhibitor UNC 0631 and by the pleiotropic HDAC inhibitor Trichostatin-A, revealing that CyaA-elicited epigenetic alterations mediate transcriptional reprogramming of monocytes and play a role in CyaA-triggered block of monocyte differentiation into bactericidal macrophage cells.IMPORTANCETo proliferate on host airway mucosa and evade elimination by patrolling sentinel cells, the whooping cough agent Bordetella pertussis produces a potently immunosubversive adenylate cyclase toxin (CyaA) that blocks opsonophagocytic killing of bacteria by phagocytes like neutrophils and macrophages. Indeed, chemotactic migration of CD14+ monocytes to the infection site and their transition into bactericidal macrophages, thus replenishing the exhausted mucosa-patrolling macrophages, represents one of the key mechanisms of innate immune defense to infection. We show that the cAMP signaling action of CyaA already at a very low toxin concentration triggers massive transcriptional reprogramming of monocytes that is accompanied by chromatin remodeling and epigenetic histone modifications, which block the transition of migratory monocytes into bactericidal macrophage cells. This reveals a novel layer of toxin action-mediated hijacking of functional differentiation of innate immune cells for the sake of mucosal pathogen proliferation and transmission to new hosts.

{"title":"<i>Bordetella</i> adenylate cyclase toxin elicits chromatin remodeling and transcriptional reprogramming that blocks differentiation of monocytes into macrophages.","authors":"Jawid Nazir Ahmad, Martin Modrak, Marketa Fajfrova, Blanca Martin-Borja Sotoca, Oldrich Benada, Peter Sebo","doi":"10.1128/mbio.00138-25","DOIUrl":"https://doi.org/10.1128/mbio.00138-25","url":null,"abstract":"<p><p><i>Bordetella pertussis</i> infects human upper airways and deploys an array of immunosuppressive virulence factors, among which the adenylate cyclase toxin (CyaA) plays a prominent role in disarming host phagocytes. CyaA binds the complement receptor-3 (CR3 aka α<sub>M</sub>β<sub>2</sub> integrin CD11b/CD18 or Mac-1) of myeloid cells and delivers into their cytosol an adenylyl cyclase enzyme that hijacks cellular signaling through unregulated conversion of cytosolic ATP to cAMP. We found that the action of as little CyaA as 22 pM (4 ng/mL) blocks macrophage colony-stimulating factor (M-CSF)-driven transition of migratory human CD14<sup>+</sup> monocytes into macrophages. Global transcriptional profiling (RNAseq) revealed that exposure of monocytes to 22 pM CyaA for 40 hours in culture with 20 ng/mL of M-CSF led to upregulation of genes that exert negative control of monocyte to macrophage differentiation (e.g., <i>SERPINB2, DLL1,</i> and <i>CSNK1E</i>). The sustained CyaA action yielded downregulation of numerous genes involved in processes crucial for host defense, such as myeloid cell differentiation, chemotaxis of inflammatory cells, antigen presentation, phagocytosis, and bactericidal activities. CyaA-elicited signaling also promoted deacetylation and trimethylation of lysines 9 and 27 of histone 3 (H3K9me3 and H3K27me3) and triggered the formation of transcriptionally repressive heterochromatin patches in the nuclei of CyaA-exposed monocytes. These effects were partly reversed by the G9a methyltransferase inhibitor UNC 0631 and by the pleiotropic HDAC inhibitor Trichostatin-A, revealing that CyaA-elicited epigenetic alterations mediate transcriptional reprogramming of monocytes and play a role in CyaA-triggered block of monocyte differentiation into bactericidal macrophage cells.IMPORTANCETo proliferate on host airway mucosa and evade elimination by patrolling sentinel cells, the whooping cough agent <i>Bordetella pertussis</i> produces a potently immunosubversive adenylate cyclase toxin (CyaA) that blocks opsonophagocytic killing of bacteria by phagocytes like neutrophils and macrophages. Indeed, chemotactic migration of CD14<sup>+</sup> monocytes to the infection site and their transition into bactericidal macrophages, thus replenishing the exhausted mucosa-patrolling macrophages, represents one of the key mechanisms of innate immune defense to infection. We show that the cAMP signaling action of CyaA already at a very low toxin concentration triggers massive transcriptional reprogramming of monocytes that is accompanied by chromatin remodeling and epigenetic histone modifications, which block the transition of migratory monocytes into bactericidal macrophage cells. This reveals a novel layer of toxin action-mediated hijacking of functional differentiation of innate immune cells for the sake of mucosal pathogen proliferation and transmission to new hosts.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0013825"},"PeriodicalIF":5.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geographic divergence of methicillin-resistant Staphylococcus aureus ST5-SCCmecI in the aftermath of a major earthquake and tsunami: impact of a plasmid harboring heavy metal resistance genes.
IF 5.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-19 DOI: 10.1128/mbio.03669-24
Jose R W Martínez, Manuel Alcalde-Rico, Estefanía Jara-Videla, Jinnethe Reyes, Lina P Carvajal, Sandra Rincon, Rafael Ríos, Lorena Diaz, Ana Quesille-Villalobos, Roberto Riquelme-Neira, Lina Rivas, Ahmed M Moustafa, Blake Hanson, Eduardo A Undurraga, Jorge Olivares-Pacheco, Patricia García, Rafael Araos, Paul J Planet, César A Arias, Jose M Munita

Methicillin-resistant Staphylococcus aureus (MRSA) is a major public health menace. The global spread of MRSA is characterized by successive waves of epidemic clones dominating specific geographical regions. The acquisition of genes encoding resistance to heavy metals (HMRGs) is thought to be a key feature in the geographic divergence of MRSA. However, the cause-effect relationship between the presence of HMRGs and the divergence of MRSA clones remains to be clarified. In this study, we assessed the role that HMRGs may have played in the evolutionary divergence of the MRSA ST5-SCCmecI lineage in Latin America. We conducted a genomic characterization of 113 MRSA clinical isolates from six Latin American healthcare centers, including 53 isolates collected from two cities in Chile (Santiago and Concepción). We found a plasmid (pSCL4752) harboring arsenic, cadmium, and mercury resistance genes in 65% (n = 71) of the ST5-SCCmecI isolates. We also observed a geographic divergence associated with the presence of pSCL4752 in Chilean isolates, with a higher frequency in isolates from Concepción (88%) compared to Santiago (29%). Interestingly, a molecular clock analysis revealed that this divergence occurred in the aftermath of an 8.8 Mw earthquake and tsunami that struck the Concepción area in 2010. Moreover, our results demonstrate that the carriage of pSCL4752 can be beneficial or detrimental for ST5-SCCmecI isolates, depending on the environmental availability of these heavy metals. Our results suggest that the divergence of the ST5-SCCmecI MRSA lineage in Latin America could have been fostered by environmental disasters and influenced by the presence/absence of HMRGs harbored in a plasmid.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA) is a major cause of life-threatening infections worldwide and a growing public health concern. The rise of antibiotic-resistant bacteria, such as MRSA, is often linked to genetic adaptations that enhance their survival. Our research sheds light on how environmental changes, such as those triggered by a natural disaster, can influence the evolution and geographic spread of a highly resistant MRSA lineage in Latin America. We identified a plasmid carrying genes for resistance to arsenic, cadmium, and mercury, which was associated with the geographic divergence of the ST5-SCCmecI MRSA lineage, with striking differences in its prevalence between regions affected by a major earthquake and tsunami. By linking environmental events to pathogen evolution, our study highlights the role of ecological pressures in the spread of MRSA. These findings emphasize the need to integrate environmental monitoring into public health strategies to better understand the global challenge of antimicrobial resistance.

{"title":"Geographic divergence of methicillin-resistant <i>Staphylococcus aureus</i> ST5-SCC<i>mec</i>I in the aftermath of a major earthquake and tsunami: impact of a plasmid harboring heavy metal resistance genes.","authors":"Jose R W Martínez, Manuel Alcalde-Rico, Estefanía Jara-Videla, Jinnethe Reyes, Lina P Carvajal, Sandra Rincon, Rafael Ríos, Lorena Diaz, Ana Quesille-Villalobos, Roberto Riquelme-Neira, Lina Rivas, Ahmed M Moustafa, Blake Hanson, Eduardo A Undurraga, Jorge Olivares-Pacheco, Patricia García, Rafael Araos, Paul J Planet, César A Arias, Jose M Munita","doi":"10.1128/mbio.03669-24","DOIUrl":"https://doi.org/10.1128/mbio.03669-24","url":null,"abstract":"<p><p>Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) is a major public health menace. The global spread of MRSA is characterized by successive waves of epidemic clones dominating specific geographical regions. The acquisition of genes encoding resistance to heavy metals (HMRGs) is thought to be a key feature in the geographic divergence of MRSA. However, the cause-effect relationship between the presence of HMRGs and the divergence of MRSA clones remains to be clarified. In this study, we assessed the role that HMRGs may have played in the evolutionary divergence of the MRSA ST5-SCC<i>mec</i>I lineage in Latin America. We conducted a genomic characterization of 113 MRSA clinical isolates from six Latin American healthcare centers, including 53 isolates collected from two cities in Chile (Santiago and Concepción). We found a plasmid (pSCL4752) harboring arsenic, cadmium, and mercury resistance genes in 65% (<i>n</i> = 71) of the ST5-SCC<i>mec</i>I isolates. We also observed a geographic divergence associated with the presence of pSCL4752 in Chilean isolates, with a higher frequency in isolates from Concepción (88%) compared to Santiago (29%). Interestingly, a molecular clock analysis revealed that this divergence occurred in the aftermath of an 8.8 Mw earthquake and tsunami that struck the Concepción area in 2010. Moreover, our results demonstrate that the carriage of pSCL4752 can be beneficial or detrimental for ST5-SCC<i>mec</i>I isolates, depending on the environmental availability of these heavy metals. Our results suggest that the divergence of the ST5-SCC<i>mec</i>I MRSA lineage in Latin America could have been fostered by environmental disasters and influenced by the presence/absence of HMRGs harbored in a plasmid.IMPORTANCEMethicillin-resistant <i>Staphylococcus aureus</i> (MRSA) is a major cause of life-threatening infections worldwide and a growing public health concern. The rise of antibiotic-resistant bacteria, such as MRSA, is often linked to genetic adaptations that enhance their survival. Our research sheds light on how environmental changes, such as those triggered by a natural disaster, can influence the evolution and geographic spread of a highly resistant MRSA lineage in Latin America. We identified a plasmid carrying genes for resistance to arsenic, cadmium, and mercury, which was associated with the geographic divergence of the ST5-SCC<i>mec</i>I MRSA lineage, with striking differences in its prevalence between regions affected by a major earthquake and tsunami. By linking environmental events to pathogen evolution, our study highlights the role of ecological pressures in the spread of MRSA. These findings emphasize the need to integrate environmental monitoring into public health strategies to better understand the global challenge of antimicrobial resistance.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0366924"},"PeriodicalIF":5.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metagenomic and transcriptomic investigation of pediatric acute liver failure cases reveals a common pathway predominated by monocytes. 对小儿急性肝衰竭病例进行的元基因组和转录组学调查发现了一种以单核细胞为主的共同途径。
IF 5.1 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-18 DOI: 10.1128/mbio.03913-24
Ruben H de Kleine, Ellen C Carbo, Willem S Lexmond, Xuewei W Zhou, Alicia de Kroon, Hailiang Mei, Sander T H Bontemps, Rick Hennevelt, Lilli Gard, Igor A Sidorov, Stefan A Boers, Marius C van den Heuvel, Emilie P Buddingh, Aloys C M Kroes, Vincent E de Meijer, Elisabeth H Schölvinck, Karin J von Eije, Simon P Jochems, Jutte J C de Vries
<p><p>In 2022, a cluster of severe childhood hepatitis was detected primarily in Europe and North America, leading to a global alert by the World Health Organization. An association with adeno-associated virus 2 (AAV2) in conjunction with human adenoviruses was found. Five percent of the cases progressed to acute liver failure, necessitating transplantation. The mechanism of disease that accounts for fulminant liver failure in these patients remains incompletely described. An upsurge was observed of in the five total cases of acute liver failure that presented to the Dutch national referral center for pediatric liver transplantation in the spring of 2022. An in-depth molecular analysis of the mechanism of pediatric acute liver failure was performed using targeted transcriptomics and metagenomics to identify any virus present in the cases, immune profile haplotypes, and differentially expressed gene groups. Explanted liver tissue and plasma samples (<i>n</i> = 15) were subjected to viral metagenomic and human transcriptomic profiling, targeting >600 inflammatory genes. Liver transcriptomic signatures of transplanted cases were compared with those of pediatric controls from a liver biobank (<i>n</i> = 6). AAV2, adenoviruses, and herpesviruses were detected in liver explant tissue and plasma samples of the cases. Epstein-Barr virus and varicella zoster virus infection with pathognomonic clinical symptomatology preceded liver failure in two respective cases. AAV2 was detected in one-third of control livers. Excessive activation of monocyte pathways was detected in liver explants from cases compared with controls. Remarkably, this signature was comparable for AAV2, adenoviruses, and/or herpesviruses-positive transplant cases. Our multi-omic findings suggest a common transcriptomic profile, with an upregulation of monocyte pathways in the presented transplanted cases, which had similar severe clinical outcomes. In the cohort presented, AAV2 was not exclusively associated with acute liver failure, suggesting that other processes may have contributed to a uniform cascade of irreversible pathology.</p><p><strong>Importance: </strong>Since the appearance of the cluster of pediatric hepatitis of unknown origin in 2022, several groups have reported an association of adenoviruses and AAV2 in a high number of cases in contrast to controls. The adenoviruses detected were heterogeneous in both species-adenovirus C and F-and sequences. The mechanisms of disease that accounts for fulminant liver failure, occurring in 5% of pediatric hepatitis cases, remain incompletely described. The current study adds to previous data by including pediatric acute liver failure cases during the upsurge, enabling the analyses of inflammation expression profiles in cases with different viruses in relation to pediatric controls. This led to the discovery of transcriptome upregulation of monocyte pathways in liver explants from the cases. This inflammatory transcriptomic signature was
{"title":"Metagenomic and transcriptomic investigation of pediatric acute liver failure cases reveals a common pathway predominated by monocytes.","authors":"Ruben H de Kleine, Ellen C Carbo, Willem S Lexmond, Xuewei W Zhou, Alicia de Kroon, Hailiang Mei, Sander T H Bontemps, Rick Hennevelt, Lilli Gard, Igor A Sidorov, Stefan A Boers, Marius C van den Heuvel, Emilie P Buddingh, Aloys C M Kroes, Vincent E de Meijer, Elisabeth H Schölvinck, Karin J von Eije, Simon P Jochems, Jutte J C de Vries","doi":"10.1128/mbio.03913-24","DOIUrl":"https://doi.org/10.1128/mbio.03913-24","url":null,"abstract":"&lt;p&gt;&lt;p&gt;In 2022, a cluster of severe childhood hepatitis was detected primarily in Europe and North America, leading to a global alert by the World Health Organization. An association with adeno-associated virus 2 (AAV2) in conjunction with human adenoviruses was found. Five percent of the cases progressed to acute liver failure, necessitating transplantation. The mechanism of disease that accounts for fulminant liver failure in these patients remains incompletely described. An upsurge was observed of in the five total cases of acute liver failure that presented to the Dutch national referral center for pediatric liver transplantation in the spring of 2022. An in-depth molecular analysis of the mechanism of pediatric acute liver failure was performed using targeted transcriptomics and metagenomics to identify any virus present in the cases, immune profile haplotypes, and differentially expressed gene groups. Explanted liver tissue and plasma samples (&lt;i&gt;n&lt;/i&gt; = 15) were subjected to viral metagenomic and human transcriptomic profiling, targeting &gt;600 inflammatory genes. Liver transcriptomic signatures of transplanted cases were compared with those of pediatric controls from a liver biobank (&lt;i&gt;n&lt;/i&gt; = 6). AAV2, adenoviruses, and herpesviruses were detected in liver explant tissue and plasma samples of the cases. Epstein-Barr virus and varicella zoster virus infection with pathognomonic clinical symptomatology preceded liver failure in two respective cases. AAV2 was detected in one-third of control livers. Excessive activation of monocyte pathways was detected in liver explants from cases compared with controls. Remarkably, this signature was comparable for AAV2, adenoviruses, and/or herpesviruses-positive transplant cases. Our multi-omic findings suggest a common transcriptomic profile, with an upregulation of monocyte pathways in the presented transplanted cases, which had similar severe clinical outcomes. In the cohort presented, AAV2 was not exclusively associated with acute liver failure, suggesting that other processes may have contributed to a uniform cascade of irreversible pathology.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Importance: &lt;/strong&gt;Since the appearance of the cluster of pediatric hepatitis of unknown origin in 2022, several groups have reported an association of adenoviruses and AAV2 in a high number of cases in contrast to controls. The adenoviruses detected were heterogeneous in both species-adenovirus C and F-and sequences. The mechanisms of disease that accounts for fulminant liver failure, occurring in 5% of pediatric hepatitis cases, remain incompletely described. The current study adds to previous data by including pediatric acute liver failure cases during the upsurge, enabling the analyses of inflammation expression profiles in cases with different viruses in relation to pediatric controls. This led to the discovery of transcriptome upregulation of monocyte pathways in liver explants from the cases. This inflammatory transcriptomic signature was","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0391324"},"PeriodicalIF":5.1,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
mBio
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1