Frequently arising ESX-1-associated phase variants influence Mycobacterium tuberculosis fitness in the presence of host and antibiotic pressures.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY mBio Pub Date : 2025-03-12 Epub Date: 2025-01-28 DOI:10.1128/mbio.03762-24
Michael J Luna, Peter O Oluoch, Jiazheng Miao, Peter Culviner, Kadamba Papavinasasundaram, Eleni Jaecklein, Scarlet S Shell, Thomas R Ioerger, Sarah M Fortune, Maha R Farhat, Christopher M Sassetti
{"title":"Frequently arising ESX-1-associated phase variants influence <i>Mycobacterium tuberculosis</i> fitness in the presence of host and antibiotic pressures.","authors":"Michael J Luna, Peter O Oluoch, Jiazheng Miao, Peter Culviner, Kadamba Papavinasasundaram, Eleni Jaecklein, Scarlet S Shell, Thomas R Ioerger, Sarah M Fortune, Maha R Farhat, Christopher M Sassetti","doi":"10.1128/mbio.03762-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Mycobacterium tuberculosis</i> (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, <i>espR</i>. By engineering this frequently observed indel into an isogenic background, we demonstrate that a single nucleotide insertion in the <i>espR</i> 5'UTR causes post-transcriptional upregulation of EspR protein abundance and corresponding alterations in the EspR regulon. Consequently, this mutation increases the expression of ESX-1 components in the <i>espACD</i> operon and enhances ESX-1 substrate secretion. We find that this indel specifically increases isoniazid resistance without impacting the effectiveness of other drugs tested. Furthermore, we show that two distinct observed HT indels that regulate either <i>espR</i> translation or <i>espACD</i> transcription increase bacterial fitness in a mouse infection model. The presence of multiple ESX-1-associated HTs provides a mechanism to combinatorially tune protein secretion, drug sensitivity, and host-pathogen interactions. More broadly, these findings support emerging data that Mtb utilizes HT-mediated phase variation to direct genetic variation to certain sites across the genome in order to adapt to changing pressures.</p><p><strong>Importance: </strong><i>Mycobacterium tuberculosis</i> (Mtb) is responsible for more deaths worldwide than any other single infectious agent. Understanding how this pathogen adapts to the varied environmental pressures imposed by host immunity and antibiotics has important implications for the design of more effective therapies. In this work, we show that the genome of Mtb contains multiple contingency loci that control the activity of the ESX-1 secretion system, which is critical for interactions with the host. These loci consist of homopolymeric DNA tracts in gene regulatory regions that are subject to high-frequency reversible variation and act to tune the activity of ESX-1. We find that variation at these sites increases the fitness of Mtb in the presence of antibiotic and/or during infection. These findings indicate that Mtb has the ability to diversify its genome in specific sites to create subpopulations of cells that are preadapted to new conditions.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0376224"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898584/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03762-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycobacterium tuberculosis (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, espR. By engineering this frequently observed indel into an isogenic background, we demonstrate that a single nucleotide insertion in the espR 5'UTR causes post-transcriptional upregulation of EspR protein abundance and corresponding alterations in the EspR regulon. Consequently, this mutation increases the expression of ESX-1 components in the espACD operon and enhances ESX-1 substrate secretion. We find that this indel specifically increases isoniazid resistance without impacting the effectiveness of other drugs tested. Furthermore, we show that two distinct observed HT indels that regulate either espR translation or espACD transcription increase bacterial fitness in a mouse infection model. The presence of multiple ESX-1-associated HTs provides a mechanism to combinatorially tune protein secretion, drug sensitivity, and host-pathogen interactions. More broadly, these findings support emerging data that Mtb utilizes HT-mediated phase variation to direct genetic variation to certain sites across the genome in order to adapt to changing pressures.

Importance: Mycobacterium tuberculosis (Mtb) is responsible for more deaths worldwide than any other single infectious agent. Understanding how this pathogen adapts to the varied environmental pressures imposed by host immunity and antibiotics has important implications for the design of more effective therapies. In this work, we show that the genome of Mtb contains multiple contingency loci that control the activity of the ESX-1 secretion system, which is critical for interactions with the host. These loci consist of homopolymeric DNA tracts in gene regulatory regions that are subject to high-frequency reversible variation and act to tune the activity of ESX-1. We find that variation at these sites increases the fitness of Mtb in the presence of antibiotic and/or during infection. These findings indicate that Mtb has the ability to diversify its genome in specific sites to create subpopulations of cells that are preadapted to new conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
期刊最新文献
Temporal expression classes and functions of vaccinia virus and mpox (monkeypox) virus genes. Adaptive evolution of sesquiterpene deoxyphomenone in mycoparasitism by Hansfordia pulvinata associated with horizontal gene transfer from Aspergillus species. Defense arsenal of the strict anaerobe Clostridioides difficile against reactive oxygen species encountered during its infection cycle. Insights into the physiological and metabolic features of Thalassobacterium, a novel genus of Verrucomicrobiota with the potential to drive the carbon cycle. Lactate dehydrogenase is the Achilles' heel of Lyme disease bacterium Borreliella burgdorferi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1