A plant-derived biostimulant Aminolom Enzimatico® application stimulates chlorophyll content, electrolyte leakage, stomata density and root yield of radishes under salinity stress.

IF 2.3 3区 生物学 Q2 MULTIDISCIPLINARY SCIENCES PeerJ Pub Date : 2025-01-24 eCollection Date: 2025-01-01 DOI:10.7717/peerj.18804
Gamze Kaya
{"title":"A plant-derived biostimulant Aminolom Enzimatico® application stimulates chlorophyll content, electrolyte leakage, stomata density and root yield of radishes under salinity stress.","authors":"Gamze Kaya","doi":"10.7717/peerj.18804","DOIUrl":null,"url":null,"abstract":"<p><p>Biostimulants stimulate plant growth and tolerance to salinity stress, which creates unfavorable conditions for plant growth from emergence to harvest; however, little is known about their roles in triggering salt tolerance. Therefore, the study aimed to determine how applying a foliar plant-derived biostimulant (Aminolom Enzimatico® 24%) affects the growth (leaf area, biomass weight, root diameter, root fresh weight, and water-soluble dry matter), physiology (chlorophyll content, electrolyte leakage, cell membrane stability, and relative water content), and stomata of the lower and upper parts of leaves in radish plants (<i>Raphanus sativus</i> L.) under salinity stress. Radish plantlets at 7 d old were irrigated with saline water (<i>i.e</i>., 50, 100, 150, and 200 mM NaCl), and the biostimulant was sprayed twice at 7 d intervals. Under salinity stress, increased water-soluble dry matter content was detected, along with reduced plant biomass weight, root fresh weight, and root diameter. Meanwhile, the foliar biostimulant increased the mean root fresh weight, biomass fresh weight, and leaf area by 12%, 13.6%, and 24% compared to the control, respectively. Increasing NaCl dramatically reduced leaf area and relative water content, whereas chlorophyll content and stomata densities on both sides of the leaves improved. By regulating physiological parameters and thereby promoting root and leaf growth, the biostimulant application improved the radish plants' tolerance to salinity stress up to 100 mM NaCl. Spraying the biostimulant can also boost plant growth, root yield, and radish quality under moderate salinity stress.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"13 ","pages":"e18804"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771304/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18804","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biostimulants stimulate plant growth and tolerance to salinity stress, which creates unfavorable conditions for plant growth from emergence to harvest; however, little is known about their roles in triggering salt tolerance. Therefore, the study aimed to determine how applying a foliar plant-derived biostimulant (Aminolom Enzimatico® 24%) affects the growth (leaf area, biomass weight, root diameter, root fresh weight, and water-soluble dry matter), physiology (chlorophyll content, electrolyte leakage, cell membrane stability, and relative water content), and stomata of the lower and upper parts of leaves in radish plants (Raphanus sativus L.) under salinity stress. Radish plantlets at 7 d old were irrigated with saline water (i.e., 50, 100, 150, and 200 mM NaCl), and the biostimulant was sprayed twice at 7 d intervals. Under salinity stress, increased water-soluble dry matter content was detected, along with reduced plant biomass weight, root fresh weight, and root diameter. Meanwhile, the foliar biostimulant increased the mean root fresh weight, biomass fresh weight, and leaf area by 12%, 13.6%, and 24% compared to the control, respectively. Increasing NaCl dramatically reduced leaf area and relative water content, whereas chlorophyll content and stomata densities on both sides of the leaves improved. By regulating physiological parameters and thereby promoting root and leaf growth, the biostimulant application improved the radish plants' tolerance to salinity stress up to 100 mM NaCl. Spraying the biostimulant can also boost plant growth, root yield, and radish quality under moderate salinity stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ
PeerJ MULTIDISCIPLINARY SCIENCES-
CiteScore
4.70
自引率
3.70%
发文量
1665
审稿时长
10 weeks
期刊介绍: PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.
期刊最新文献
Associations of PM2.5 and its components with term preterm rupture of membranes: a retrospective study. Effects of drought stress and Morchella inoculation on the physicochemical properties, enzymatic activities, and bacterial community of Poa pratensis L. rhizosphere soil. Fructose 1,6-bisphosphatase 1 is a potential biomarker affecting the malignant phenotype and aerobic glycolysis in glioblastoma. Bidirectional association between breast cancer and dementia: a systematic review and meta-analysis of observational studies. Effect of exercise intervention on health-related quality of life in middle-aged and older people with osteoporosis: a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1