Pooja V Nagime, Nishat M Shaikh, Sudarshan Singh, Vaishali S Chandak, Vijay R Chidrawar, Eloise Parry Nweye
{"title":"Metallic Nanostructures: An Updated Review on Synthesis, Stability, Safety, and Applications with Tremendous Multifunctional Opportunities.","authors":"Pooja V Nagime, Nishat M Shaikh, Sudarshan Singh, Vaishali S Chandak, Vijay R Chidrawar, Eloise Parry Nweye","doi":"10.2174/0122117385358312250108180301","DOIUrl":null,"url":null,"abstract":"<p><p>Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs). This sustainable approach utilizes biological sources, like actinomycetes, algae, fungi, polymers, crops, waste biomass, and yeast, recognized for their excellent biocompatibility, availability, affordability, and efficiency. Biological extracts act as reducing and stabilizing agents, with the metabolites and enzymes present in these extracts aiding in the conversion of metal ions into nanoparticles. This review offers an in-depth examination of different MNPs, such as copper, gold, platinum, silver, and zinc, emphasizing their distinct characteristics and a variety of synthesis methods. The review further explores the diverse applications of MNPs in biomimetics, agriculture, and various industrial sectors, including energy, catalysis, and wastewater treatment, along with optical enhancement. This review explores stability and toxicity profiles, filling a significant gap in the existing knowledge base and providing valuable insights into the broad applicability of MNPs.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385358312250108180301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs). This sustainable approach utilizes biological sources, like actinomycetes, algae, fungi, polymers, crops, waste biomass, and yeast, recognized for their excellent biocompatibility, availability, affordability, and efficiency. Biological extracts act as reducing and stabilizing agents, with the metabolites and enzymes present in these extracts aiding in the conversion of metal ions into nanoparticles. This review offers an in-depth examination of different MNPs, such as copper, gold, platinum, silver, and zinc, emphasizing their distinct characteristics and a variety of synthesis methods. The review further explores the diverse applications of MNPs in biomimetics, agriculture, and various industrial sectors, including energy, catalysis, and wastewater treatment, along with optical enhancement. This review explores stability and toxicity profiles, filling a significant gap in the existing knowledge base and providing valuable insights into the broad applicability of MNPs.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.