Gopinath Subramaniyan, Rubina Shaik, Bachu Venkata Ramana, Meriton Stanley A, Devasena Srinivasan
{"title":"Revolutionizing Drug Delivery: A Design Professional's Approach to Drug-loaded Transferosomal Vesicles for Transdermal Use.","authors":"Gopinath Subramaniyan, Rubina Shaik, Bachu Venkata Ramana, Meriton Stanley A, Devasena Srinivasan","doi":"10.2174/0122117385346215250109142123","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to develop and evaluate lornoxicam (LXM) and thiocolchicoside (TCS) transferosomal transdermal patches.</p><p><strong>Background: </strong>Oral administration of LXM and TCS can lead to gastric irritation, necessitating alternative delivery methods for pain and inflammation relief. Incorporating LXM & TCS into transferosomes within a transdermal patch offers a potential solution.</p><p><strong>Objective: </strong>The objective of this study is to develop and evaluate transferosomal transdermal patches containing LXM and TCS, incorporating Aloe vera leaf mucilage (AVLM) and lime oil (LO) as permeability enhancers. The aim is to enhance the skin permeation of these drugs while mitigating gastric irritation associated with their oral administration.</p><p><strong>Method: </strong>Transferosomes were made by the thin film hydration tactic, with nine formulations based on three independent variables: phosphatidylcholine, span 80, and sonication time. Entrapment efficiency and drug release at 6th h were assessed as dependent variables. The optimized combination was then formulated into transdermal patches via central composite design, evaluating the impact of AVLM and LO on lornoxicam discharge and other physicochemical properties.</p><p><strong>Results: </strong>The average weight and thickness of the patches ranged from 7.52±0.75 to 8.07±0.11g and from 1.69±0.01 to 1.82±0.02mm, respectively, representing minimal variance. The LXM/TCS content homogeneity ranged from 92.84±3.55 to 94.07±4.61% for LXM and from 90.17±1.98 to 93.18±2.98% for TCS, demonstrating robust uniformity. Higher proportions of phosphatidylcholine and span 80, along with lesser sonication time, led to improved entrapment of lornoxicam. In vitro, discharge studies demonstrated optimal discharge with a higher proportion of phosphatidylcholine, a medium proportion of span 80, and a longer sonication time. The transferosomal patches exhibited zero-order discharge kinetics, with LXM & TCS discharge % at 24, 48, and 72 h.</p><p><strong>Conclusion: </strong>The study concludes that formulation TDP-8, which incorporates 3g of Aloe vera leaf mucilage (AVLM) and lime oil (LO) as permeability enhancers, demonstrated favorable discharge characteristics. This indicates its potential as an effective transdermal delivery system for LXM and TCS, offering a promising substitute for pain and inflammation relief while minimizing gastric irritation. The study succeeded in developing and evaluating transferosomal transdermal patches for LXM and TCS, providing an alternative delivery method that minimizes gastric irritation.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385346215250109142123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: This study aimed to develop and evaluate lornoxicam (LXM) and thiocolchicoside (TCS) transferosomal transdermal patches.
Background: Oral administration of LXM and TCS can lead to gastric irritation, necessitating alternative delivery methods for pain and inflammation relief. Incorporating LXM & TCS into transferosomes within a transdermal patch offers a potential solution.
Objective: The objective of this study is to develop and evaluate transferosomal transdermal patches containing LXM and TCS, incorporating Aloe vera leaf mucilage (AVLM) and lime oil (LO) as permeability enhancers. The aim is to enhance the skin permeation of these drugs while mitigating gastric irritation associated with their oral administration.
Method: Transferosomes were made by the thin film hydration tactic, with nine formulations based on three independent variables: phosphatidylcholine, span 80, and sonication time. Entrapment efficiency and drug release at 6th h were assessed as dependent variables. The optimized combination was then formulated into transdermal patches via central composite design, evaluating the impact of AVLM and LO on lornoxicam discharge and other physicochemical properties.
Results: The average weight and thickness of the patches ranged from 7.52±0.75 to 8.07±0.11g and from 1.69±0.01 to 1.82±0.02mm, respectively, representing minimal variance. The LXM/TCS content homogeneity ranged from 92.84±3.55 to 94.07±4.61% for LXM and from 90.17±1.98 to 93.18±2.98% for TCS, demonstrating robust uniformity. Higher proportions of phosphatidylcholine and span 80, along with lesser sonication time, led to improved entrapment of lornoxicam. In vitro, discharge studies demonstrated optimal discharge with a higher proportion of phosphatidylcholine, a medium proportion of span 80, and a longer sonication time. The transferosomal patches exhibited zero-order discharge kinetics, with LXM & TCS discharge % at 24, 48, and 72 h.
Conclusion: The study concludes that formulation TDP-8, which incorporates 3g of Aloe vera leaf mucilage (AVLM) and lime oil (LO) as permeability enhancers, demonstrated favorable discharge characteristics. This indicates its potential as an effective transdermal delivery system for LXM and TCS, offering a promising substitute for pain and inflammation relief while minimizing gastric irritation. The study succeeded in developing and evaluating transferosomal transdermal patches for LXM and TCS, providing an alternative delivery method that minimizes gastric irritation.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.