Impact of monosodium glutamate-induced obesity on learning, memory, and DNA damage: Sex-based comparative study in rats

IF 2.4 3区 医学 Q2 BEHAVIORAL SCIENCES Physiology & Behavior Pub Date : 2025-01-25 DOI:10.1016/j.physbeh.2025.114822
Fatih Altintas , Hasan Akca , Tunahan Anber , Dilek Sayin , Melek Tunc-Ata , Vural Kucukatay , Ismail Hakki Akbudak
{"title":"Impact of monosodium glutamate-induced obesity on learning, memory, and DNA damage: Sex-based comparative study in rats","authors":"Fatih Altintas ,&nbsp;Hasan Akca ,&nbsp;Tunahan Anber ,&nbsp;Dilek Sayin ,&nbsp;Melek Tunc-Ata ,&nbsp;Vural Kucukatay ,&nbsp;Ismail Hakki Akbudak","doi":"10.1016/j.physbeh.2025.114822","DOIUrl":null,"url":null,"abstract":"<div><div>Obesity is a global health crisis linked to numerous adverse outcomes including cardiovascular disease, type 2 diabetes, cancer and cognitive decline. This study investigated the sex-specific effects of monosodium glutamate (MSG)-induced obesity on learning, memory, anxiety-like behavior, oxidative stress, and genotoxicity in rats. In 32 neonatal Wistar albino rats, subcutaneous MSG injections were administered to induce obesity. Both male and female obese rats displayed significant abdominal fat accumulation, with a more pronounced increase in females. Cognitive assessments using the Morris water maze test revealed substantial impairments in learning and memory in both sexes, although no significant sex-related differences were observed. Anxiety-like behavior remained unaffected by obesity in both sexes, as indicated by behavioral tests. Oxidative stress in the hippocampus, measured by total oxidant and antioxidant levels, did not show significant alterations. However, the study found genotoxic effects in female obese rats, indicated by DNA damage, whereas male rats did not exhibit such effects. The results suggest that MSG-induced obesity negatively impacts cognitive function and causes genotoxicity, particularly in females, highlighting the potential sex-specific vulnerabilities in obesity-related pathologies. This research provides valuable insights into the cognitive and genetic consequences of obesity, with implications for understanding complex biological mechanisms across sexes.</div></div>","PeriodicalId":20201,"journal":{"name":"Physiology & Behavior","volume":"292 ","pages":"Article 114822"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031938425000241","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity is a global health crisis linked to numerous adverse outcomes including cardiovascular disease, type 2 diabetes, cancer and cognitive decline. This study investigated the sex-specific effects of monosodium glutamate (MSG)-induced obesity on learning, memory, anxiety-like behavior, oxidative stress, and genotoxicity in rats. In 32 neonatal Wistar albino rats, subcutaneous MSG injections were administered to induce obesity. Both male and female obese rats displayed significant abdominal fat accumulation, with a more pronounced increase in females. Cognitive assessments using the Morris water maze test revealed substantial impairments in learning and memory in both sexes, although no significant sex-related differences were observed. Anxiety-like behavior remained unaffected by obesity in both sexes, as indicated by behavioral tests. Oxidative stress in the hippocampus, measured by total oxidant and antioxidant levels, did not show significant alterations. However, the study found genotoxic effects in female obese rats, indicated by DNA damage, whereas male rats did not exhibit such effects. The results suggest that MSG-induced obesity negatively impacts cognitive function and causes genotoxicity, particularly in females, highlighting the potential sex-specific vulnerabilities in obesity-related pathologies. This research provides valuable insights into the cognitive and genetic consequences of obesity, with implications for understanding complex biological mechanisms across sexes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiology & Behavior
Physiology & Behavior 医学-行为科学
CiteScore
5.70
自引率
3.40%
发文量
274
审稿时长
47 days
期刊介绍: Physiology & Behavior is aimed at the causal physiological mechanisms of behavior and its modulation by environmental factors. The journal invites original reports in the broad area of behavioral and cognitive neuroscience, in which at least one variable is physiological and the primary emphasis and theoretical context are behavioral. The range of subjects includes behavioral neuroendocrinology, psychoneuroimmunology, learning and memory, ingestion, social behavior, and studies related to the mechanisms of psychopathology. Contemporary reviews and theoretical articles are welcomed and the Editors invite such proposals from interested authors.
期刊最新文献
Hippocampal microRNA-181a overexpression participates in anxiety and ethanol related behaviors via regulating the expression of SIRT-1 Repeated footshock stress enhances cocaine self-administration in male and female rats: Role of the cannabinoid receptor 1. The Role of Gut Microbiota and Bacterial Translocation in the Pathogenesis and Management of Type 2 Diabetes Mellitus: Mechanisms, Impacts, and Dietary Therapeutic Strategies. Editorial Board Corrigendum to ‘Deep learning dives: Predicting anxiety in Zebrafish through novel tank assay analysis’ Physiology & Behavior (2024), 114696
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1