Samuel Tetteh-Quarshie, Karli M. Morrison, Nathan A. Olszewski, Lauren E. Young, Esther N. Mensah, Mason K. Sword, Brandon J. Henderson
{"title":"The influence of high-fat diet on nicotine vapor self-administration, neuronal excitability, and leptin levels in adult mice","authors":"Samuel Tetteh-Quarshie, Karli M. Morrison, Nathan A. Olszewski, Lauren E. Young, Esther N. Mensah, Mason K. Sword, Brandon J. Henderson","doi":"10.1016/j.physbeh.2025.114823","DOIUrl":null,"url":null,"abstract":"<div><div>With the rise in fast-food culture and the continued high numbers of tobacco-related deaths, there has been a great deal of interest in understanding the relationship between high-fat diet (HFD) and nicotine use behaviors. Using adult mice and a patch-clamp electrophysiology assay, we investigated the influence of HFD on the excitability of ventral tegmental area (VTA) dopamine neurons and pyramidal neurons in the medial prefrontal cortex (mPFC) given their role in modulating the reinforcing effects of nicotine and natural rewards. We then examined whether HFD-induced changes in peripheral markers were associated with nicotine use behaviors. Here, mice were assigned standard diet (SD) or HFD for 6 weeks and then trained to self-administer nicotine using an e-vape® self-administration (EVSA) assay. After the last session, changes in glucose, insulin, and leptin were assessed with ELISA. HFD-assigned mice displayed a decrease in intrinsic excitability of VTA dopamine neurons; but an increase in intrinsic excitability of layer VI prelimbic mPFC neurons. SD-assigned female mice demonstrated enhanced nicotine EVSA during fixed-ratio 3 relative to SD males. HFD-assigned male and female mice displayed increased nicotine EVSA during FR1. However, only HFD-assigned male mice exhibited enhanced nicotine EVSA during FR3. Finally, HFD-assigned male and female mice displayed increased leptin levels. However, we only observed a direct correlation between leptin levels and EVSA responding during FR1 in HFD-fed male mice. These results suggest that high-fat diet alter nicotine intake in a sex-specific manner, and this may be due to diet-induced changes in neuronal excitability and circulating leptin levels.</div></div>","PeriodicalId":20201,"journal":{"name":"Physiology & Behavior","volume":"292 ","pages":"Article 114823"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031938425000253","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With the rise in fast-food culture and the continued high numbers of tobacco-related deaths, there has been a great deal of interest in understanding the relationship between high-fat diet (HFD) and nicotine use behaviors. Using adult mice and a patch-clamp electrophysiology assay, we investigated the influence of HFD on the excitability of ventral tegmental area (VTA) dopamine neurons and pyramidal neurons in the medial prefrontal cortex (mPFC) given their role in modulating the reinforcing effects of nicotine and natural rewards. We then examined whether HFD-induced changes in peripheral markers were associated with nicotine use behaviors. Here, mice were assigned standard diet (SD) or HFD for 6 weeks and then trained to self-administer nicotine using an e-vape® self-administration (EVSA) assay. After the last session, changes in glucose, insulin, and leptin were assessed with ELISA. HFD-assigned mice displayed a decrease in intrinsic excitability of VTA dopamine neurons; but an increase in intrinsic excitability of layer VI prelimbic mPFC neurons. SD-assigned female mice demonstrated enhanced nicotine EVSA during fixed-ratio 3 relative to SD males. HFD-assigned male and female mice displayed increased nicotine EVSA during FR1. However, only HFD-assigned male mice exhibited enhanced nicotine EVSA during FR3. Finally, HFD-assigned male and female mice displayed increased leptin levels. However, we only observed a direct correlation between leptin levels and EVSA responding during FR1 in HFD-fed male mice. These results suggest that high-fat diet alter nicotine intake in a sex-specific manner, and this may be due to diet-induced changes in neuronal excitability and circulating leptin levels.
期刊介绍:
Physiology & Behavior is aimed at the causal physiological mechanisms of behavior and its modulation by environmental factors. The journal invites original reports in the broad area of behavioral and cognitive neuroscience, in which at least one variable is physiological and the primary emphasis and theoretical context are behavioral. The range of subjects includes behavioral neuroendocrinology, psychoneuroimmunology, learning and memory, ingestion, social behavior, and studies related to the mechanisms of psychopathology. Contemporary reviews and theoretical articles are welcomed and the Editors invite such proposals from interested authors.